Featured Research

from universities, journals, and other organizations

A model-free way to characterize polymodal ion channel gating

Date:
December 27, 2012
Source:
Rockefeller University Press
Summary:
Two studies help pave the way for a "shortcut" model-free approach to studying activation of "polymodal" ion channels -- channels that open in response to multiple stimuli.

Two studies in the Journal of General Physiology pave the way for a "shortcut" model-free approach to studying activation of polymodal ion channels like the BK voltage- and ligand-activated channel (structural hierarchy pictured here).
Credit: Image modified from: Pantazis, A., et al. 2010. J. Gen. Physiol. 136:645–657.

Two studies in The Journal of General Physiology (JGP) help pave the way for a "shortcut" model-free approach to studying activation of "polymodal" ion channels -- channels that open in response to multiple stimuli. Transmembrane ion channels respond to various physiological stimuli to regulate numerous cellular functions.

Related Articles


Different classes of channels respond to different types of stimuli; some channels, for instance, respond to changes in membrane potential whereas others are activated by ligand binding. Polymodal channels integrate different cellular signals, enabling them to mediate a more precise and flexible physiological response. Understanding the mechanisms involved in polymodal channel activation has been a challenge, however, in part because of the complexity of the models required.

Now, two studies in the January issue of JGP use straightforward thermodynamically rigorous analysis to parse the free energy of polymodal voltage- and ligand-dependent ion channels. In one study, University of Wisconsin-Madison researchers Sandipan Chowdhury and Baron Chanda examine the BK channel -- a channel activated by both changes in membrane potential and calcium binding to an intracellular domain. In the second study, Daniel Sigg (dPET Professional Services) explores gating of polymodal ion channels in general. Specifically, the authors show how to use G-V (conductance-voltage), Q-V (charge-voltage) and conductance vs. ligand concentration measurements to extract the free energies of interaction of the modules of a polymodal channel that respond to these distinct modalities

This new approach opens the door for a model-independent way to studying ion channel gating, which could be useful both for constraining future atomic-scale models of channel gating, and in understanding the disruptions that result from disease causing genetic mutations.


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Journal References:

  1. S. Chowdhury, B. Chanda. Free-energy relationships in ion channels activated by voltage and ligand. The Journal of General Physiology, 2012; DOI: 10.1085/jgp.201210860
  2. D. Sigg. A linkage analysis toolkit for studying allosteric networks in ion channels. The Journal of General Physiology, 2012; DOI: 10.1085/jgp.201210859
  3. O. Yifrach. No model in mind: A model-free approach for studying ion channel gating. The Journal of General Physiology, 2012; DOI: 10.1085/jgp.201210929

Cite This Page:

Rockefeller University Press. "A model-free way to characterize polymodal ion channel gating." ScienceDaily. ScienceDaily, 27 December 2012. <www.sciencedaily.com/releases/2012/12/121227142955.htm>.
Rockefeller University Press. (2012, December 27). A model-free way to characterize polymodal ion channel gating. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2012/12/121227142955.htm
Rockefeller University Press. "A model-free way to characterize polymodal ion channel gating." ScienceDaily. www.sciencedaily.com/releases/2012/12/121227142955.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Binge-Watching TV Linked To Loneliness

Binge-Watching TV Linked To Loneliness

Newsy (Jan. 29, 2015) Researchers at University of Texas at Austin found a link between binge-watching TV shows and feelings of loneliness and depression. Video provided by Newsy
Powered by NewsLook.com
Signs You Might Be The Passive Aggressive Friend

Signs You Might Be The Passive Aggressive Friend

BuzzFeed (Jan. 28, 2015) "No, I&apos;m not mad. Why, are you mad?" Video provided by BuzzFeed
Powered by NewsLook.com
City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins