Featured Research

from universities, journals, and other organizations

A model-free way to characterize polymodal ion channel gating

Date:
December 27, 2012
Source:
Rockefeller University Press
Summary:
Two studies help pave the way for a "shortcut" model-free approach to studying activation of "polymodal" ion channels -- channels that open in response to multiple stimuli.

Two studies in the Journal of General Physiology pave the way for a "shortcut" model-free approach to studying activation of polymodal ion channels like the BK voltage- and ligand-activated channel (structural hierarchy pictured here).
Credit: Image modified from: Pantazis, A., et al. 2010. J. Gen. Physiol. 136:645–657.

Two studies in The Journal of General Physiology (JGP) help pave the way for a "shortcut" model-free approach to studying activation of "polymodal" ion channels -- channels that open in response to multiple stimuli. Transmembrane ion channels respond to various physiological stimuli to regulate numerous cellular functions.

Different classes of channels respond to different types of stimuli; some channels, for instance, respond to changes in membrane potential whereas others are activated by ligand binding. Polymodal channels integrate different cellular signals, enabling them to mediate a more precise and flexible physiological response. Understanding the mechanisms involved in polymodal channel activation has been a challenge, however, in part because of the complexity of the models required.

Now, two studies in the January issue of JGP use straightforward thermodynamically rigorous analysis to parse the free energy of polymodal voltage- and ligand-dependent ion channels. In one study, University of Wisconsin-Madison researchers Sandipan Chowdhury and Baron Chanda examine the BK channel -- a channel activated by both changes in membrane potential and calcium binding to an intracellular domain. In the second study, Daniel Sigg (dPET Professional Services) explores gating of polymodal ion channels in general. Specifically, the authors show how to use G-V (conductance-voltage), Q-V (charge-voltage) and conductance vs. ligand concentration measurements to extract the free energies of interaction of the modules of a polymodal channel that respond to these distinct modalities

This new approach opens the door for a model-independent way to studying ion channel gating, which could be useful both for constraining future atomic-scale models of channel gating, and in understanding the disruptions that result from disease causing genetic mutations.


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Journal References:

  1. S. Chowdhury, B. Chanda. Free-energy relationships in ion channels activated by voltage and ligand. The Journal of General Physiology, 2012; DOI: 10.1085/jgp.201210860
  2. D. Sigg. A linkage analysis toolkit for studying allosteric networks in ion channels. The Journal of General Physiology, 2012; DOI: 10.1085/jgp.201210859
  3. O. Yifrach. No model in mind: A model-free approach for studying ion channel gating. The Journal of General Physiology, 2012; DOI: 10.1085/jgp.201210929

Cite This Page:

Rockefeller University Press. "A model-free way to characterize polymodal ion channel gating." ScienceDaily. ScienceDaily, 27 December 2012. <www.sciencedaily.com/releases/2012/12/121227142955.htm>.
Rockefeller University Press. (2012, December 27). A model-free way to characterize polymodal ion channel gating. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/12/121227142955.htm
Rockefeller University Press. "A model-free way to characterize polymodal ion channel gating." ScienceDaily. www.sciencedaily.com/releases/2012/12/121227142955.htm (accessed July 25, 2014).

Share This




More Mind & Brain News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com
Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins