Featured Research

from universities, journals, and other organizations

Magnetic forces without magnets: Physicist calculates field strengths in the early universe

Date:
January 2, 2013
Source:
Ruhr-Universitaet-Bochum
Summary:
Magnets have practically become everyday objects. Earlier on, however, the universe consisted only of nonmagnetic elements and particles. Just how the magnetic forces came into existence has now been researched. A theoretical physicist describes a new mechanism for the magnetization of the universe even before the emergence of the first stars.

A theoretical physicist describes a new mechanism for the magnetization of the universe even before the emergence of the first stars.
Credit: © Yuriy Mazur / Fotolia

Magnets have practically become everyday objects. Earlier on, however, the universe consisted only of nonmagnetic elements and particles. Just how the magnetic forces came into existence has been researched by Prof. Dr. Reinhard Schlickeiser at the Institute of Theoretical Physics of the Ruhr-Universitδt Bochum. In the journal Physical Review Letters, he describes a new mechanism for the magnetisation of the universe even before the emergence of the first stars.

No permanent magnets in the early universe

Before the formation of the first stars, the luminous matter consisted only of a fully ionised gas of protons, electrons, helium nuclei and lithium nuclei which were produced during the Big Bang. "All higher metals, for example, magnetic iron could, according to today's conception, only be formed in the inside of stars," says Reinhard Schlickeiser. "In early times therefore, there were no permanent magnets in the Universe." The parameters that describe the state of a gas are, however, not constant. Density and pressure, as well as electric and magnetic fields fluctuate around certain mean values. As a result of this fluctuation, at certain points in the plasma weak magnetic fields formed -- so-called random fields. How strong these fields are in a fully ionised plasma of protons and electrons, has now been calculated by Prof. Schlickeiser, specifically for the gas densities and temperatures that occurred in the plasmas of the early universe.

Weak magnetic fields with large volumes

The result: the magnetic fields fluctuate depending on their position in the plasma, however, regardless of time -- unlike, for example, electromagnetic waves such as light waves, which fluctuate over time. Everywhere in the luminous gas of the early universe there was a magnetic field with a strength of 10^-20 Tesla, i.e. 10 sextillionth of a Tesla. By comparison, the earth's magnetic field has a strength of 30 millionths of a Tesla. In MRI scanners, field strengths of three Tesla are now usual. The magnetic field in the plasma of the early universe was thus very weak, but it covered almost 100 percent of the plasma volume.

Interaction of thermal shock waves and magnetic fields

Stellar winds or supernova explosions of the first massive stars generated shock waves that compressed the magnetic random fields in certain areas. In this way, the fields were strengthened and aligned on a wide-scale. Ultimately, the magnetic force was so strong that it in turn influenced the shock waves. "This explains the balance often observed between magnetic forces and thermal gas pressure in cosmic objects," says Prof. Schlickeiser. The calculations show that all fully ionised gases in the early universe were weakly magnetised. Magnetic fields therefore existed even before the first stars. Next, the Bochum physicist is set to examine how the weak magnetic fields affect temperature fluctuations in the cosmic background radiation.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Schlickeiser. Cosmic Magnetization: From Spontaneously Emitted Aperiodic Turbulent to Ordered Equipartition Fields. Physical Review Letters, 2012; 109 (26) DOI: 10.1103/PhysRevLett.109.261101

Cite This Page:

Ruhr-Universitaet-Bochum. "Magnetic forces without magnets: Physicist calculates field strengths in the early universe." ScienceDaily. ScienceDaily, 2 January 2013. <www.sciencedaily.com/releases/2013/01/130102083553.htm>.
Ruhr-Universitaet-Bochum. (2013, January 2). Magnetic forces without magnets: Physicist calculates field strengths in the early universe. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/01/130102083553.htm
Ruhr-Universitaet-Bochum. "Magnetic forces without magnets: Physicist calculates field strengths in the early universe." ScienceDaily. www.sciencedaily.com/releases/2013/01/130102083553.htm (accessed July 30, 2014).

Share This




More Space & Time News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) — The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) — Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins