- 'New Girl' Chimps Form Stronger Female Bonds
- Savannahs Slow Climate Change: Study
- Partly Human Yeast Show a Common Ancestor
- Modern Alchemy: Synthesis of Exotic Compounds
- Key Global Ocean Microbe-Virus Interactions
- Sudden Onset of Ice Loss in Antarctica
- Intuitive Control of Robotic Arm Using Thought
- Most Luminous Galaxy in Universe
- One-Of-A-Kind Star Nicknamed 'Nasty'
- Genetic Maps Help Maintain Healthy Bears

Science News

from research organizations

- Date:
- January 7, 2013
- Source:
- Elhuyar Fundazioa
- Summary:
- In 1928 the British physicist Paul Dirac put forward one of the fundamental equations that we use today to mathematically describe a spin one-half particle from a relativistic point of view. The mathematical representation that Dirac came up with enables certain particles, including the electron, to be better understood. Nevertheless, much more remains to be discovered.
- Share:

FULL STORY

In 1928 the British physicist Paul Dirac put forward one of the fundamental equations that we use today to mathematically describe a spin one-half particle from a relativistic point of view. The mathematical representation that Dirac came up with enables certain particles, including the electron, to be better understood. Nevertheless, much more remains to be discovered.

For the case of particles like electrons that move at great speed, it is very important that the equation that describes them should bear in mind the contribution of the theory of relativity, since at high speeds the effects of this theory become clear. Although Schrödinger had previously discovered an equation that describes the movement of the electron, his equation does not take the theory of relativity into consideration.

The complexity of the structure of Dirac's equation makes it very difficult indeed to study it. "There are fewer pieces of work on Dirac's equation than on other equations on partial derivatives like, for example, that of waves or that of Schrödinger," says the mathematician Naiara Arrizabalaga. "It has a very complicated structure. Just as the equations that describe heat or waves are written as a single equation in partial derivatives, the Dirac one is a system of four equations related to each other. This is because the operator associated with the Dirac equation is a differential matrix operator. "

**Making the unresolvable resolvable**

Arrizabalaga's PhD thesis has studied Dirac's relativistic equation for the precise reason that few pieces of work have been done on it. Specifically, the thesis has set out to study the self-adjoint extensions of the Dirac operator with different potentials, including the electromagnetic potentials with singularity at the origin, using inequalities of the Hardy-Dirac type for this purpose.

There is one condition in particular that must be met so that the Dirac equation has a solution and that this solution is the only one:the operator associated with the equation must be self-adjoint, in other words, it must be symmetrical and its domain must coincide with that of its adjoint. In the cases in which it is not possible to prove that the operator is self-adjoint in a certain domain, then it is interesting to build self-adjoint extensions.

Arrizabalaga has studied what these extensions have to be like when the Dirac equation is applied to different potentials. "The Dirac equation is based on a physical reality which is the movement of certain particles. But in the reality around us these particles are not alone, they interact with others and are under the influence of electromagnetic fields," says Arrizabalaga. And that is why she has studied the Dirac operator with electrical and magnetic potentials. The first part of the thesis deals with diagonal electrostatic potentials, and the second tackles more general electromagnetic potentials that have a Coulomb-type singularity.

The construction of the self-adjoint extensions for all the potentials studied are related to Hardy-Dirac type inequalities, which are proven in this same piece of work and which are of independent interest owing to the methods involved in the demonstrations and the different uses they have.

Another interesting aspect about the Dirac equation is that it can be understood as a dispersive equation, in other words, it describes a wave system that is dispersed in time and space. This is why the equation meets certain dispersive estimates. The thesis has concentrated specifically on Strichartz estimates. Counterexamples are builtin the last part of the thesis for the Strichartz estimates for the Diracmagnetic equation, and what is more, counterexamples have been found for the wave equation.

In short, the thesis has striven to further certain mathematical methods that allow progress to be made in resolving the Dirac equation. What is more, it is believed that the methods created in this piece of work will be of use in other equations.

**Story Source:**

The above story is based on materials provided by **Elhuyar Fundazioa**. *Note: Materials may be edited for content and length.*

**Cite This Page**:

Elhuyar Fundazioa. "A mathematical study of the famous Dirac equation that describes particles." ScienceDaily. ScienceDaily, 7 January 2013. <www.sciencedaily.com/releases/2013/01/130107082226.htm>.

Elhuyar Fundazioa. (2013, January 7). A mathematical study of the famous Dirac equation that describes particles. *ScienceDaily*. Retrieved May 22, 2015 from www.sciencedaily.com/releases/2013/01/130107082226.htm

Elhuyar Fundazioa. "A mathematical study of the famous Dirac equation that describes particles." ScienceDaily. www.sciencedaily.com/releases/2013/01/130107082226.htm (accessed May 22, 2015).

Matter & Energy News

May 22, 2015

Latest Headlines

updated 12:56 pm ET

May 21, 2015 — Scientists for the first time have precisely measured a protein's natural "knee-jerk" reaction to the breaking of a chemical bond -- a quaking motion that propagated through ... read more

May 21, 2015 — A new chemical technology uses cancer cells' own protein-degrading machinery to destroy, rather than merely inhibit, cancer proteins. Researchers developed the strategy as a ... read more

May 21, 2015 — Extremely small batteries built inside nanopores show that properly scaled structures can use the full theoretical capacity of the charge storage material. The batteries are ... read more

May 21, 2015 — A highly sensitive imaging technique for non-invasive screening of lymph nodes for metastatic cancer has been developed by researchers. The new imaging technique -- so far ... read more

May 19, 2015 — Researchers have made a new protein detection platform using low-cost plastic and paper substrates. Their work could help reduce the cost and improve the accuracy of ... read more

May 21, 2015 — Where do electronics go when they die? Most devices are laid to eternal rest in landfills. But what if they just dissolved away, or broke down to their molecular components ... read more

May 21, 2015 — Researchers created thin, flexible electronic devices that efficiently harvest the mechanical energy from natural motions of the human body. In addition to advances in ... read more

May 21, 2015 — Researchers have developed a process to make a thermoset that can be reshaped and reused. The new plastic is a shape-memory polymer, so named because the material can ... read more

May 21, 2015 — Emplacement of carbon dioxide at the Bravo Dome gas field in New Mexico began more than 900,000 years earlier than ... read more

May 21, 2015 — For decades, the fundamental design of microwave devices, such as antennas for mobile communication and waveguides used in radars, has essentially relied on the inventiveness of a professional ... read more