Featured Research

from universities, journals, and other organizations

New stem cell approach for blindness successful in mice

Date:
January 7, 2013
Source:
University of Oxford
Summary:
Blind mice can see again, after researchers transplanted developing cells into their eyes and found they could re-form the entire light-sensitive layer of the retina.

Cells which have re-formed the light sensitive layer of the retina are shown in green.
Credit: Image courtesy of University of Oxford

Blind mice can see again, after Oxford University researchers transplanted developing cells into their eyes and found they could re-form the entire light-sensitive layer of the retina.

Videos show the nocturnal mice, which once didn't notice the difference between light and dark at all, now run from the light and prefer to be in the dark -- just like mice with normal vision.

The researchers say the approach has relevance for treating patients with retinitis pigmentosa, a condition in which the light-sensing cells in the retina gradually die leading to progressive blindness.

The study was led by Professor Robert MacLaren in the Nuffield Department of Clinical Neurosciences at the University of Oxford, together with Dr Mandeep Singh, an eye surgeon from the National University Hospital of Singapore who is currently undertaking PhD studies in Oxford. The findings are published online in the Proceedings of the National Academy of Sciences.

The researchers worked with mice that are blind due to complete loss of the light-sensing photoreceptor cells in their retinas. This is the most relevant mouse model for treating patients who are blind from retinitis pigmentosa.

After two weeks, the researchers showed the cells transplanted into the eye had re-formed a full light-detecting layer on the retina and the mice could see.

The cells used were mouse 'precursor' cells that are on an initial path towards developing into retinal cells.

A pupil constriction test showed that, of the 12 mice that received the cell transplant, 10 showed improved pupil constriction in response to light. This shows that the retinas of the mice were sensing the light once more, and this was being transmitted down the optic nerve to the brain.

Dr Singh says: 'We found that if enough cells are transplanted together, they not only become light sensing but they also regenerate the connections required for meaningful vision.'

Professor MacLaren explains: 'Stem cells have been trialled in patients to replace the pigmented lining of the retina, but this new research shows that the light-sensing layer might also be replaced in a similar way. The light-sensing cells have a highly complex structure and we observed that they can resume function as a layer and restore connections after transplantation into the completely blind retina.'

In looking forward towards potential cell treatments for blindness in humans, Professor MacLaren explains that they would like to use induced pluripotent stem cells, or iPS cells. These are stem cells that have been generated from the patient's own cells, such as skin or blood cells, and can then be directed to form precursors of the retina cells.

Professor MacLaren says that this has been achieved by others: 'All the steps are there for doing this in patients in the future.' The next step is to find a reliable source of cells in patients that can provide the stem cells for use in such transplants, he says.

While these are more long-term developments to work towards, Professor MacLaren says 'Our study shows what we could achieve with a cell-based approach.'

'We have shown the transplanted cells survive, they become light-sensitive, and they connect and reform the wiring to the rest of the retina to restore vision,' he says. 'The ability to reconstruct the entire light sensitive layer of the retina using cell transplantation is the ultimate goal of the stem cell treatments for blindness we are all working towards.'


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mandeep S. Singh, Peter Charbel Issa, Rachel Butler, Chris Martin, Daniel M. Lipinski, Sumathi Sekaran, Alun R. Barnard, and Robert E. MacLaren. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1119416110

Cite This Page:

University of Oxford. "New stem cell approach for blindness successful in mice." ScienceDaily. ScienceDaily, 7 January 2013. <www.sciencedaily.com/releases/2013/01/130107160413.htm>.
University of Oxford. (2013, January 7). New stem cell approach for blindness successful in mice. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/01/130107160413.htm
University of Oxford. "New stem cell approach for blindness successful in mice." ScienceDaily. www.sciencedaily.com/releases/2013/01/130107160413.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins