Featured Research

from universities, journals, and other organizations

Faulty behavior: New earthquake fault models show that 'stable' zones may contribute to the generation of massive earthquakes

Date:
January 9, 2013
Source:
California Institute of Technology
Summary:
In an earthquake, ground motion is the result of waves emitted when the two sides of a fault move rapidly past each other. Not all fault segments move so quickly, however -- some slip slowly and are considered to be "stable." One hypothesis suggests that creeping fault behavior is persistent over time, with stable segments acting as barriers to fast-slipping earthquakes. But a new study shows that this might not be true.

Numerical simulations illustrate that fault segments can move slowly and stably over long periods of time and later host large earthquakes. Dashed lines represent slow slip every 50 years along a cross-section of the fault, with the numbers indicating the simulated time in years. Earthquakes are shown by solid lines plotted every second. The area marked patch B can both slip slowly (e.g., dashed lines above the 4,500 year mark) and participate in large earthquakes (e.g., yellow event).
Credit: Nadia Lapusta / Caltech

In an earthquake, ground motion is the result of waves emitted when the two sides of a fault move -- or slip -- rapidly past each other, with an average relative speed of about three feet per second. Not all fault segments move so quickly, however -- some slip slowly, through a process called creep, and are considered to be "stable," e.g. not capable of hosting rapid earthquake-producing slip. One common hypothesis suggests that such creeping fault behavior is persistent over time, with currently stable segments acting as barriers to fast-slipping, shake-producing earthquake ruptures. But a new study by researchers at the California Institute of Technology (Caltech) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) shows that this might not be true.

"What we have found, based on laboratory data about rock behavior, is that such supposedly stable segments can behave differently when an earthquake rupture penetrates into them. Instead of arresting the rupture as expected, they can actually join in and hence make earthquakes much larger than anticipated," says Nadia Lapusta, professor of mechanical engineering and geophysics at Caltech and coauthor of the study, published January 9 in the journal Nature.

She and her coauthor, Hiroyuki Noda, a scientist at JAMSTEC and previously a postdoctoral scholar at Caltech, hypothesize that this is what occurred in the 2011 magnitude 9.0 Tohoku-Oki earthquake, which was unexpectedly large.

Fault slip, whether fast or slow, results from the interaction between the stresses acting on the fault and friction, or the fault's resistance to slip. Both the local stress and the resistance to slip depend on a number of factors such as the behavior of fluids permeating the rocks in Earth's crust. So, the research team formulated fault models that incorporate laboratory-based knowledge of complex friction laws and fluid behavior, and developed computational procedures that allow the scientists to numerically simulate how those model faults will behave under stress.

"The uniqueness of our approach is that we aim to reproduce the entire range of observed fault behaviors -- earthquake nucleation, dynamic rupture, postseismic slip, interseismic deformation, patterns of large earthquakes -- within the same physical model; other approaches typically focus only on some of these phenomena," says Lapusta.

In addition to reproducing a range of behaviors in one model, the team also assigned realistic fault properties to the model faults, based on previous laboratory experiments on rock materials from an actual fault zone -- the site of the well-studied 1999 magnitude 7.6 Chi-Chi earthquake in Taiwan.

"In that experimental work, rock materials from boreholes cutting through two different parts of the fault were studied, and their properties were found to be conceptually different," says Lapusta. "One of them had so-called velocity-weakening friction properties, characteristic of earthquake-producing fault segments, and the other one had velocity-strengthening friction, the kind that tends to produce stable creeping behavior under tectonic loading. However, these 'stable' samples were found to be much more susceptible to dynamic weakening during rapid earthquake-type motions, due to shear heating."

Lapusta and Noda used their modeling techniques to explore the consequences of having two fault segments with such lab-determined fault-property combinations. They found that the ostensibly stable area would indeed occasionally creep, and often stop seismic events, but not always. From time to time, dynamic rupture would penetrate that area in just the right way to activate dynamic weakening, resulting in massive slip. They believe that this is what happened in the Chi-Chi earthquake; indeed, the quake's largest slip occurred in what was believed to be the "stable" zone.

"We find that the model qualitatively reproduces the behavior of the 2011 magnitude 9.0 Tohoku-Oki earthquake as well, with the largest slip occurring in a place that may have been creeping before the event," says Lapusta. "All of this suggests that the underlying physical model, although based on lab measurements from a different fault, may be qualitatively valid for the area of the great Tohoku-Oki earthquake, giving us a glimpse into the mechanics and physics of that extraordinary event."

If creeping segments can participate in large earthquakes, it would mean that much larger events than seismologists currently anticipate in many areas of the world are possible. That means, Lapusta says, that the seismic hazard in those areas may need to be reevaluated.

For example, a creeping segment separates the southern and northern parts of California's San Andreas Fault. Seismic hazard assessments assume that this segment would stop an earthquake from propagating from one region to the other, limiting the scope of a San Andreas quake. However, the team's findings imply that a much larger event may be possible than is now anticipated -- one that might involve both the Los Angeles and San Francisco metropolitan areas.

"Lapusta and Noda's realistic earthquake fault models are critical to our understanding of earthquakes -- knowledge that is essential to reducing the potential catastrophic consequences of seismic hazards," says Ares Rosakis, chair of Caltech's division of engineering and applied science. "This work beautifully illustrates the way that fundamental, interdisciplinary research in the mechanics of seismology at Caltech is having a positive impact on society."

Now that they've been proven to qualitatively reproduce the behavior of the Tohoku-Oki quake, the models may be useful for exploring future earthquake scenarios in a given region, "including extreme events," says Lapusta. Such realistic fault models, she adds, may also be used to study how earthquakes may be affected by additional factors such as human-made disturbances resulting from geothermal energy harvesting and CO2 sequestration. "We plan to further develop the modeling to incorporate realistic fault geometries of specific well-instrumented regions, like Southern California and Japan, to better understand their seismic hazard."

"Creeping fault segments can turn from stable to destructive due to dynamic weakening" appears in the January 9 issue of the journal Nature. Funding for this research was provided by the National Science Foundation; the Southern California Earthquake Center; the Gordon and Betty Moore Foundation; and the Ministry of Education, Culture, Sports, Science and Technology in Japan.


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Katie Neith. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hiroyuki Noda, Nadia Lapusta. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 2013; DOI: 10.1038/nature11703

Cite This Page:

California Institute of Technology. "Faulty behavior: New earthquake fault models show that 'stable' zones may contribute to the generation of massive earthquakes." ScienceDaily. ScienceDaily, 9 January 2013. <www.sciencedaily.com/releases/2013/01/130109151204.htm>.
California Institute of Technology. (2013, January 9). Faulty behavior: New earthquake fault models show that 'stable' zones may contribute to the generation of massive earthquakes. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/01/130109151204.htm
California Institute of Technology. "Faulty behavior: New earthquake fault models show that 'stable' zones may contribute to the generation of massive earthquakes." ScienceDaily. www.sciencedaily.com/releases/2013/01/130109151204.htm (accessed September 17, 2014).

Share This



More Earth & Climate News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins