Featured Research

from universities, journals, and other organizations

Rhythms in the brain help give a sense of location, study shows

Date:
January 10, 2013
Source:
University of Edinburgh
Summary:
Scientists have shed light on how mechanisms in the brain work to give us a sense of location. Researchers tracked electrical signals in the part of the brain linked to spatial awareness.

Research at the University of Edinburgh tracked electrical signals in the part of the brain linked to spatial awareness.

The study could help us understand how, if we know a room, we can go into it with our eyes shut and find our way around. This is closely related to the way we map out how to get from one place to another

Scientists found that brain cells, which code location through increases in electrical activity, do not do so by talking directly to each other. Instead, they can only send each other signals through cells that are known to reduce electrical activity.

This is unexpected as cells that reduce electrical signalling are often thought to simply supress brain activity.

The research also looked at electrical rhythms or waves of brain activity. Previous studies have found that spatial awareness is linked to not only the number and strength of electrical signals but also where on the electrical wave they occur.

The research shows that the indirect communication between nerve cells that are involved in spatial awareness also helps to explain how these electrical waves are generated.

This finding is surprising because its suggests that the same cellular mechanisms allow our brains to work out our location and generate rhythmic waves of activity.

Spatial awareness and the brain's electrical rhythms are known to be affected in conditions such as schizophrenia and Alzheimer's disease, so the scientists' work could help research in these areas.

The study, funded by the Biotechnology and Biological Research Council, is published in the journal Neuron. It looked at connections between nerve cells in the brain needed for spatial awareness in mice and then used computer modelling to recreate patterns of neural activity found in the brain.

Matt Nolan, of the University of Edinburgh's Centre for Integrative Physiology, said: "Rhythms in brain activity are very mysterious and the research helps shed some light on this area as well as helping us understand how our brains code spatial information. It is particularly interesting that cells thought to encode location do not signal to each other directly but do so through intermediary cells. This is somewhat like members of a team not talking to each other, but instead sending messages via members of an opposing side."


Story Source:

The above story is based on materials provided by University of Edinburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hugh Pastoll, Lukas Solanka, MarkC.W. vanRossum, MatthewF. Nolan. Feedback Inhibition Enables Theta-Nested Gamma Oscillations and Grid Firing Fields. Neuron, 2013; 77 (1): 141 DOI: 10.1016/j.neuron.2012.11.032

Cite This Page:

University of Edinburgh. "Rhythms in the brain help give a sense of location, study shows." ScienceDaily. ScienceDaily, 10 January 2013. <www.sciencedaily.com/releases/2013/01/130110094754.htm>.
University of Edinburgh. (2013, January 10). Rhythms in the brain help give a sense of location, study shows. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/01/130110094754.htm
University of Edinburgh. "Rhythms in the brain help give a sense of location, study shows." ScienceDaily. www.sciencedaily.com/releases/2013/01/130110094754.htm (accessed April 17, 2014).

Share This



More Mind & Brain News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins