Featured Research

from universities, journals, and other organizations

Protein identified that can disrupt embryonic brain development and neuron migration

Date:
January 14, 2013
Source:
KU Leuven
Summary:
Interneurons – nerve cells that function as ‘dimmers’ – play an important role in the brain. Their formation and migration to the cerebral cortex during the embryonic stage of development is crucial to normal brain functioning. Abnormal interneuron development and migration can eventually lead to a range of disorders and diseases, from epilepsy to Alzheimer's. New research has identified two proteins, Sip1 and Unc5b, that play an important role in the development and migration of interneurons to the cerebral cortex – a breakthrough in our understanding of early brain development.

Interneurons (moving from bottom-left to top-right in this image) use tiny arms to pull themselves out of a piece of embryonic brain tissue that has grown for two days in a petri dish.
Credit: Image courtesy of KU Leuven

Interneurons – nerve cells that function as ‘dimmers’ – play an important role in the brain. Their formation and migration to the cerebral cortex during the embryonic stage of development is crucial to normal brain functioning. Abnormal interneuron development and migration can eventually lead to a range of disorders and diseases, from epilepsy to Alzheimer's.

Related Articles


New research by Dr. Eve Seuntjens and Dr. Veronique van den Berghe of the Department of Development and Regeneration (Danny Huylebroeck laboratory, Faculty of Medicine) at KU Leuven (University of Leuven) has identified two proteins, Sip1 and Unc5b, that play an important role in the development and migration of interneurons to the cerebral cortex – a breakthrough in our understanding of early brain development.

Two types of nerve cells are crucial to healthy brain functioning. Projection neurons, the more widely known of the two, make connections between different areas of the brain. Interneurons, a second type, work as dimmers that regulate the signalling processes of projection neurons. A shortage or irregular functioning of interneurons can cause short circuits in the nervous system. This can lead to seizures, a common symptom of many brain disorders. Interneuron dysfunction even appears to play a role in schizophrenia, autism and neurodegenerative diseases such as Alzheimer's, Parkinson's and ALS.  

Trailblazers

Researchers have only recently understood how different kinds of neuron are formed during embryonic development. During early brain development, stem cells form projection neurons in the cerebral cortex. Interneurons are made elsewhere in the brain. These interneurons then migrate to the cortex to mix with the projection neurons. Dr. Eve Seuntjens of the Celgen laboratory led by Professor Danny Huylebroeck explains: "The journey of interneurons is very complex: their environment changes constantly during growth and there are no existing structures — such as nerve pathways — available for them to follow."

The question is how young interneurons receive their ‘directions’ to the cerebral cortex. Several proteins play a role, says Dr. Seuntjens. "We changed the gene containing the production code for the protein Sip1 in mice so that this protein was no longer produced during brain development.  In those mice, the interneurons never made it to the cerebral cortex — they couldn't find the way. 

That has to do with the guidance signals – substances that repel or attract interneurons and thus point them in the right direction – encountered by the interneurons on their way to the cerebral cortex. Without Sip1 production, interneurons see things through an overly sharp lens, so to speak. They see too many stop signs and become blocked. That overly sharp lens is Unc5b, a protein. Unc5b is deactivated by Sip1 in healthy mice. There are several known factors that influence the migration of interneurons, but Unc5b is the first protein we’ve isolated that we now know must be switched off in order for interneuron migration to move ahead smoothly."

The next step is to study this process in the neurons of humans. "Now that there are techniques to create stem cells from skin cells, we can mimic the development of stem cells into interneurons and study what can go wrong. From there, we can test whether certain drugs can reverse the damage. That’s all still on the horizon, but you can see that the focus of research on many brain disorders and diseases is increasingly shifting to early child development because that just might be where a cause can be found."


Story Source:

The above story is based on materials provided by KU Leuven. Note: Materials may be edited for content and length.


Journal Reference:

  1. Veronique van den Berghe, Elke Stappers, Bram Vandesande, Jordane Dimidschstein, Roel Kroes, Annick Francis, Andrea Conidi, Flore Lesage, Ruben Dries, Silvia Cazzola, Geert Berx, Nicoletta Kessaris, Pierre Vanderhaeghen, Wilfred van IJcken, Frank G. Grosveld, Steven Goossens, Jody J. Haigh, Gord Fishell, Andrι Goffinet, Stein Aerts, Danny Huylebroeck, Eve Seuntjens. Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1. Neuron, 2013; 77 (1): 70 DOI: 10.1016/j.neuron.2012.11.009

Cite This Page:

KU Leuven. "Protein identified that can disrupt embryonic brain development and neuron migration." ScienceDaily. ScienceDaily, 14 January 2013. <www.sciencedaily.com/releases/2013/01/130114101610.htm>.
KU Leuven. (2013, January 14). Protein identified that can disrupt embryonic brain development and neuron migration. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2013/01/130114101610.htm
KU Leuven. "Protein identified that can disrupt embryonic brain development and neuron migration." ScienceDaily. www.sciencedaily.com/releases/2013/01/130114101610.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins