Featured Research

from universities, journals, and other organizations

Marginal lands are prime fuel source for alternative energy

Date:
January 16, 2013
Source:
Michigan State University
Summary:
Marginal lands ­-- those unsuited for food crops -- can serve as prime real estate for meeting the U.S. alternative energy production goals. Marginal lands represent a huge untapped resource to grow mixed species cellulosic biomass, plants grown specifically for fuel production, which could annually produce up to 5.5 billion gallons of ethanol in the Midwest alone.

Fast-growing poplar grown on marginal lands can help meet Congress' 2022 cellulosic biofuels goal.
Credit: Courtesy of MSU.

Marginal lands ­- those unsuited for food crops -- can serve as prime real estate for meeting the nation's alternative energy production goals.

Related Articles


In the current issue of Nature, a team of researchers led by Michigan State University shows that marginal lands represent a huge untapped resource to grow mixed species cellulosic biomass, plants grown specifically for fuel production, which could annually produce up to 5.5 billion gallons of ethanol in the Midwest alone.

"Understanding the environmental impact of widespread biofuel production is a major unanswered question both in the U.S. and worldwide," said Ilya Gelfand, lead author and MSU postdoctoral researcher. "We estimate that using marginal lands for growing cellulosic biomass crops could provide up to 215 gallons of ethanol per acre with substantial greenhouse gas mitigation."

The notion of making better use of marginal land has been around for nearly 15 years. However, this is the first study to provide an estimate for the greenhouse gas benefits as well as an assessment of the total potential for these lands to produce significant amounts of biomass, he added.

Focusing on 10 Midwest states, Great Lakes Bioenergy researchers from MSU and the Pacific Northwest National Laboratory used 20 years of data from MSU's Kellogg Biological Station LTER Site to characterize the comparative productivity and greenhouse gas impacts of different crops, including corn, poplar, alfalfa and old field vegetation.

They then used a supercomputer to identify and model biomass production that could grow enough feedstock to support a local biorefinery with a capacity of at least 24 million gallons per year. The final tally of 5.5 billion gallons of ethanol represents about 25 percent of Congress' 2022 cellulosic biofuels target, said Phil Robertson, co-author and MSU professor of crop, soil and microbial sciences.

"The value of marginal land for energy production has been long-speculated and often discounted," he said. "This study shows that these lands could make a major contribution to transportation energy needs while providing substantial climate and -- if managed properly -- conservation benefits."

This also is the first study to show that grasses and other non-woody plants that grow naturally on unmanaged lands are sufficiently productive to make ethanol production worthwhile. Conservative numbers were used in the study, and production efficiency could be increased by carefully selecting the mix of plant species, Robertson added.

"With conservation in mind, these marginal lands can be made productive for bioenergy production and, in so doing, contribute to avoid the conflict between food and fuel production," said Cesar Izaurralde, PNNL soil scientist and University of Maryland adjunct professor.

Additional benefits for using marginal lands include:

  • New revenue for farmers and other land owners
  • No indirect land-use effects, where land in another part of the globe is cleared to replace land lost here to food production
  • No carbon debt from land conversion if existing vegetation is used or if new perennial crops are planted directly into existing vegetation

The research was funded primarily by the Department of Energy's Great Lakes Bioenergy Research Center, the National Science Foundation and MSU AgBioResearch. Additional researchers from the Pacific Northwest National Laboratory and the University of Maryland contributed to this study.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ilya Gelfand, Ritvik Sahajpal, Xuesong Zhang, R. Cιsar Izaurralde, Katherine L. Gross, G. Philip Robertson. Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 2013; DOI: 10.1038/nature11811

Cite This Page:

Michigan State University. "Marginal lands are prime fuel source for alternative energy." ScienceDaily. ScienceDaily, 16 January 2013. <www.sciencedaily.com/releases/2013/01/130116163713.htm>.
Michigan State University. (2013, January 16). Marginal lands are prime fuel source for alternative energy. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/01/130116163713.htm
Michigan State University. "Marginal lands are prime fuel source for alternative energy." ScienceDaily. www.sciencedaily.com/releases/2013/01/130116163713.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) — EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) — A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) — Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins