Featured Research

from universities, journals, and other organizations

Separating gases using a rigid polymer sieve: New polymer selectively sieves gas molecules

Date:
January 17, 2013
Source:
Cardiff University
Summary:
A new polymer may lead to more efficient large-scale separation of gas mixtures for chemical engineering and energy generation.

Gas separation is crucial for many industrial processes including obtaining nitrogen or oxygen from air and purifying natural gas or hydrogen. Currently, the most energy efficient method for separating gases involves polymer membranes, however, most polymers either let gases pass through slowly (i.e. have low permeability) or are not selective towards one gas over another. Gas separation would be cheaper and use less energy if polymer membranes could be made both highly permeable and selective.

A team from the University's School of Chemistry reports in the journal Science a new polymer that efficiently separates gas mixtures based on the different sizes of the gas molecules. The polymer's molecular structure is very contorted so that it cannot fill space efficiently, therefore leaving gaps for small gas molecules to move through quickly. However, the transport of larger gas molecules is hindered by the polymer's extreme rigidity so that it acts as an efficient molecular sieve.

The Cardiff's team's collaborators at the Institute on Membrane Technology, ITM-CNR, Italy, confirmed that membranes prepared from the polymer are both highly permeable to gases and demonstrate remarkable selectivity for smaller gases such as hydrogen or oxygen over larger gases such as nitrogen or methane.

Professor Neil McKeown, a member of the School of Chemistry's team behind the research said: "The preparation of this highly rigid and contorted polymer required us to develop a new polymerisation reaction. In fact we used some very old chemistry -- the formation of Trφger's base, which is a compound that was first prepared 125 years ago. This simple chemistry allows us to prepare highly rigid ladder polymers of high molecular mass from readily available starting materials. In addition to making polymers for efficient gas separation membranes, we anticipate that this new process will be useful for preparing polymers for a variety of different applications."

Cardiff University has applied for a patent covering this new polymerisation process.


Story Source:

The above story is based on materials provided by Cardiff University. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown. An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science, 2013; 339 (6117): 303 DOI: 10.1126/science.1228032

Cite This Page:

Cardiff University. "Separating gases using a rigid polymer sieve: New polymer selectively sieves gas molecules." ScienceDaily. ScienceDaily, 17 January 2013. <www.sciencedaily.com/releases/2013/01/130117142514.htm>.
Cardiff University. (2013, January 17). Separating gases using a rigid polymer sieve: New polymer selectively sieves gas molecules. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2013/01/130117142514.htm
Cardiff University. "Separating gases using a rigid polymer sieve: New polymer selectively sieves gas molecules." ScienceDaily. www.sciencedaily.com/releases/2013/01/130117142514.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins