Featured Research

from universities, journals, and other organizations

Genetic landscape of common brain tumors holds key to personalized treatment

Date:
January 24, 2013
Source:
Yale University
Summary:
Nearly the entire genetic landscape of the most common form of brain tumor can be explained by abnormalities in just five genes, an international team of researchers report. Knowledge of the genomic profile of the tumors and their location in the brain make it possible for the first time to develop personalized medical therapies for meningiomas, which currently are only managed surgically.

Brain tumors called meningiomas tend to be benign. A Yale study shows that tumors associated with mutations in NF2 genes have a greater chance of becoming cancerous and form on the hemispheres of the brain, while those with non-NF2 mutations such as TRAF7 form near the base of the skull, a maybe good candidates for targeted chemotherapy rather than surgery.
Credit: Image courtesy of Yale University

Nearly the entire genetic landscape of the most common form of brain tumor can be explained by abnormalities in just five genes, an international team of researchers led by Yale School of Medicine scientists report online in the Jan. 24 edition of the journal Science. Knowledge of the genomic profile of the tumors and their location in the brain make it possible for the first time to develop personalized medical therapies for meningiomas, which currently are only managed surgically.

Meningioma tumors affect about 170,000 patients in the United States. They are usually benign but can turn malignant in about 10 percent of cases. Even non-cancerous tumors can require surgery if they affect the surrounding brain tissue and disrupt neurological functions.

Approximately half of the tumors have already been linked to a mutation or deletion of a gene called neurofibromin 2, or NF2. The origins of the rest of the meningiomas had remained a mystery.

The Yale team conducted genomic analyses of 300 meningiomas and found four new genetic suspects, each of which yields clues to the origins and treatment of the condition. Tumors mutated with each of these genes tend to be located in different areas of the brain, which can indicate how likely they are to become malignant.

"Combining knowledge of these mutations with the location of tumor growth has direct clinical relevance and opens the door for personalized therapies," said Dr. Murat Gunel, the Nixdorff-German Professor of Neurosurgery, professor of genetics and of neurobiology, and senior author of the study. Gunel is also a member of Yale Cancer Center's Genetics and Genomics Research Program.

For instance, two of the mutations identified -- SMO and AKT1 -- have been linked to various cancers. SMO mutations had previously been found in basal cell carcinoma and are the target of an already approved drug for that form of skin cancer. Another, KLF4, activates a suite of genes and is known for its role in inducing stem cell formation, even in cells that have fully differentiated into a specific tissue type. Mutations in a TRAF7, a gene not previously associated with cancer, were found in approximately one-fourth of tumors. Meningiomas with these mutations are found in the skull base and are unlikely to become cancerous. In contrast, NF2 mutant tumors that flank the brain's hemispheres are more likely to progress to malignancy, especially in males.

Doctors may be able to use targeted chemotherapy on patients with non-NF2 mutations, especially those with recurrent or invasive meningiomas and those who are surgically at high risk. Individualized chemotherapies could also spare patients irradiation treatment, a risk factor for progression of these generally benign tumors. Gunel said it may also be possible to extend these approaches to more malignant tumors.

Funding for the study was provided by Gregory M. Kiez and Mehmet Kutman Foundation.


Story Source:

The above story is based on materials provided by Yale University. The original article was written by Bill Hathaway. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Genetic landscape of common brain tumors holds key to personalized treatment." ScienceDaily. ScienceDaily, 24 January 2013. <www.sciencedaily.com/releases/2013/01/130124150804.htm>.
Yale University. (2013, January 24). Genetic landscape of common brain tumors holds key to personalized treatment. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/01/130124150804.htm
Yale University. "Genetic landscape of common brain tumors holds key to personalized treatment." ScienceDaily. www.sciencedaily.com/releases/2013/01/130124150804.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins