Featured Research

from universities, journals, and other organizations

P53 mutation hinders cancer treatment response

Date:
January 25, 2013
Source:
SingHealth
Summary:
Scientists have discovered the workings of the gene that has been hindering treatment response in cancer patients. This discovery was made after five years of studying the mutant form of the p53 gene, the major tumor suppressor in humans, which is generally found mutated in over 50 percent of all type of human cancers.

Scientists from the National Cancer Centre Singapore (NCCS) have discovered the workings of the gene that has been hindering treatment response in cancer patients. This discovery was made after 5 years of studying the mutant form of the p53 gene, the major tumor suppressor in humans, which is generally found mutated in over 50% of all type of human cancers.

Related Articles


The dominant-negative (DN) effect of the mutant p53 gene in cancers was found to affect the outcome of cancer treatment modalities. DN effect is a phenomenon whereby one copy of mutant p53 that exists in cancer cells inhibits the tumor suppressor activity of the other wild-type p53 copy when they co-exist. The result is that a patient may either have poor response or earlier relapse of tumours after their treatment.

The research findings is significant in that it offers hope to improve cancer treatment outcomes by selectively inhibiting mutant p53's DN effect through several methods by generating selective and specific inhibitory molecules specific for some of the common hot-spot p53 point mutations. There are currently no drugs or compounds that can alleviate DN effects of mutant p53.

In order to understand the specific roles of mutant p53 DN properties in regulating acute treatment response and long-term tumourgenesis, a team of five researchers led by NCCS Prof Kanaga Sabapathy, the Principal Investigator in the Laboratory of Carcinogenesis and Head of the Division of Cellular & Molecular Research from NCCS, carried out experiments by generating genetically engineered knock-in mouse strains expressing varying levels of mutant p53. The results showed that DN effect is observed after acute p53 activation by a variety of chemotherapeutic drugs and irradiation, thereby affecting anti-cancer treatment. This breakthrough came after five years of intensive research.

It was found that mutant p53 have DN effects in a cell-type and dose-dependent manner, especially during acute p53 activation where p53 levels are elevated. Based on the above observations, efforts to generate specific inhibitors for the common hot spot p53 point mutations are underway. The inhibition of mutant p53 expression in cells carrying a wild-type and mutant p53 alleles can improve response to chemotherapeutic drugs.

In a further study, the researchers also questioned the possibility of the mutant p53 acquiring new functions (or Gain of Function) to drive carcinogenesis, transforming normal cells to cancerous cells. Their investigation comparing cells from genetically engineered mouse strains expressing 2 different types of p53 mutations: the R172H mutation versus the R246S mutation, which showed that Gain of Function (GOF) was found only in the former. This showed that GOF of mutated p53 is specifically dependent on mutation-type but not across all kinds of genetic mutations, highlighting diversity in properties of the different types of p53 mutations, thereby indicating that mutations found in human cancers can behave differently, and thus, need to be carefully assessed prior to treatment.

Thus, the existence of mutant p53 certainly has a negative impact on cancer treatment, whether it is through DN effect or GOF. Prof Sabapathy said that the team is now embarking on more research to determine the possibility of targeting mutant p53 without affecting wild-type p53 in human cells, paving way to clinical trials in the future to test the efficacy on cancer therapeutic response.

The research was supported by grants from the National Medical Research Council of Singapore and the Singapore Millennium Foundation to KS. The publication has been accepted and published by Cell Press, publisher of biomedical journals, in the journal Cancer Cell, on Dec. 10, 2012. Prof Sabapathy also teaches at the Duke-NUS Graduate Medical School.


Story Source:

The above story is based on materials provided by SingHealth. Note: Materials may be edited for content and length.


Journal Reference:

  1. MingKei Lee, WeiWei Teoh, BengHooi Phang, WeiMin Tong, ZhaoQi Wang, Kanaga Sabapathy. Cell-type, Dose, and Mutation-type Specificity Dictate Mutant p53 Functions InVivo. Cancer Cell, 2012; 22 (6): 751 DOI: 10.1016/j.ccr.2012.10.022

Cite This Page:

SingHealth. "P53 mutation hinders cancer treatment response." ScienceDaily. ScienceDaily, 25 January 2013. <www.sciencedaily.com/releases/2013/01/130125111331.htm>.
SingHealth. (2013, January 25). P53 mutation hinders cancer treatment response. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/01/130125111331.htm
SingHealth. "P53 mutation hinders cancer treatment response." ScienceDaily. www.sciencedaily.com/releases/2013/01/130125111331.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins