Featured Research

from universities, journals, and other organizations

New tool for mining bacterial genome for novel drugs

Date:
January 25, 2013
Source:
Vanderbilt University
Summary:
Biochemists have discovered that the process bacteria undergo when they become drug resistant can act as a powerful tool for drug discovery.

The structure of two of the drug-like molecules discovered by triggering Nocardius' drug-resistant response.
Credit: Sarah Stow, McLean Lab / Vanderbilt

Vanderbilt biochemists have discovered that the process bacteria undergo when they become drug resistant can act as a powerful tool for drug discovery.

Their findings -- reported this week in the Online Early Edition of the Proceedings of the National Academy of Sciences -- should give a major boost to natural products drug discovery -- the process of finding new drugs from compounds isolated from living organisms -- by substantially increasing the number of novel compounds that scientists can extract from individual microorganisms.

Bacteria have traditionally been the source of important drugs such as antibiotics and anticancer agents. Researchers looking for new bacterially synthesized drugs have long known that bacterial genomes contain a large number of "silent genes" that contain the instructions for making drug-like compounds. But, until now, scientists have found it is very difficult to find ways to turn on the production of these compounds, known as secondary metabolites.

While investigating how bacteria develop drug resistance, Vanderbilt biochemists Brian Bachmann and John McLean discovered that strains of antibiotic-resistant bacteria express hundreds of compounds not produced by their progenitors, many of which are potential secondary metabolites.

"It's as if the bacteria respond to the assault by the antibiotic with a 'save-all-ships' strategy of turning on hundreds of silent genes," said Bachmann, associate professor chemistry at Vanderbilt.

"This technique is something like fracking in the natural gas industry. We've known for a long time that there were large amounts of underground natural gas that we couldn't extract using conventional methods but now we can, using hydraulic fracturing technology. In a similar fashion we think we can use bacteria's antibiotic resistance to intensively mine the bacterial genome for new drug leads," he said.

The original purpose of the study was to take the most detailed look yet at what happens when microbes develop drug resistance. Bachmann is an expert in natural products drug discovery and McLean, an assistant professor of chemistry, is a pioneer in the development of analytical instrumentation and chemical techniques that can identify thousands of different biological compounds simultaneously, such as ion mobility-mass spectrometry.

"One of the daunting challenges is to rapidly inventory the tens to hundreds of thousands of molecules the bacteria construct to live, and then to read this inventory to understand how the bacteria compensate for their changing circumstances. To complicate matters further, we are looking for new drug-like molecules, so by definition we are looking for something that has not been seen before," said McLean.

Working with Research Assistant Dagmara Derewacz and graduate students Cody Goodwin and Ruth McNees, Bachmann and McLean started with the well-characterized soil bacterium Nocardiopsis. They exposed the bacterium to two different antibiotics -- streptomycin and rifampicin -- and observed the results.

"The first thing that happens is almost all of the bacteria die. Less than one cell in a million survives," said Bachmann.

The chemists then cultured the survivors (six streptomycin-resistant strains and five rifampicin-resistant strains) without the antibiotic and used McLean's instrumental methods to profile the drug-like compounds that they produced.

They discovered that the differences were much greater than they expected. The survivors had undergone extensive mutations, not only in the genes that produce secondary metabolites but also in the housekeeping genes that alter the way they make RNA and proteins. As a result, they determined that the resistant strains produced more than 300 compounds that were not expressed by the original organism.

"The cells appear to be 'de-repressing' as many of their silent genes as possible. This seems like a very drastic way to become drug resistant," Bachmann said.

McLean's team has developed strategies that allow them to automatically identify and compare the relative uniqueness and the relative abundance of tens of thousands of molecules from which the hundreds of novel compounds were found.

"What we are looking for are new species of molecules in the mutants that are the most unique and the most abundant," said Bachmann.

In the antibiotic-resistant Nocardiopsis strains the researchers found a total of five compounds that were both unique enough and abundant enough to isolate, determine their molecular structures and test for biological activity.

"Normally, we only find one compound per organism, so this is a significant improvement in yield, allowing us to get many new compounds from previously mined microorganisms," Bachmann said.


Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. K. Derewacz, C. R. Goodwin, C. R. McNees, J. A. McLean, B. O. Bachmann. Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1218524110

Cite This Page:

Vanderbilt University. "New tool for mining bacterial genome for novel drugs." ScienceDaily. ScienceDaily, 25 January 2013. <www.sciencedaily.com/releases/2013/01/130125142039.htm>.
Vanderbilt University. (2013, January 25). New tool for mining bacterial genome for novel drugs. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/01/130125142039.htm
Vanderbilt University. "New tool for mining bacterial genome for novel drugs." ScienceDaily. www.sciencedaily.com/releases/2013/01/130125142039.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins