Featured Research

from universities, journals, and other organizations

Potential of differentiated iPS cells in cell therapy without immune rejection

Date:
January 25, 2013
Source:
Boston University Medical Center
Summary:
A new study shows that tissues derived from induced pluripotent stem (iPS) cells in an experimental model were not rejected when transplanted back into genetically identical recipients.

A new study from Boston University School of Medicine (BUSM) shows that tissues derived from induced pluripotent stem (iPS) cells in an experimental model were not rejected when transplanted back into genetically identical recipients. The study, published online in Cell Stem Cell, demonstrates the potential of utilizing iPS cells to develop cell types that could offer treatment for a wide range of conditions, including diabetes, liver and lung diseases, without the barrier of immune rejection.

Related Articles


Ashleigh Boyd, DPhil, and Neil Rodrigues, DPhil, the study's senior authors, are assistant professors of dermatology at BUSM and researchers at the Center for Regenerative Medicine (CReM) at Boston University and Boston Medical Center (BMC). They also are lead investigators at the National Institutes of Health's Center of Biomedical Research Excellence (COBRE) at Roger Williams Medical Center, a clinical and research affiliate of BUSM.

iPS cells can be developed from adult cell types, such as skin or blood, by returning them to a stem cell state using genetic manipulation. iPS cells are capable of maturing (differentiating) into all the specific cell types in the body, making them a powerful tool for biological research and a source of tissues for transplantation based therapies. Given that iPS cells can be made in a patient-specific manner, there should be great potential for them to be transplanted back into the same patient without rejection. Yet a study published in Nature in 2011 demonstrated that iPS cells transplanted in the stem cell state were rejected in genetically identical recipients.

"The Nature study provocatively suggested that tissues derived from patient-specific iPS cells may be immunogenic after transplantation. However, it never directly assessed the immunogenicity of the therapeutically relevant cell types that could be utilized in regenerative medicine and transplantation," said Rodrigues.

The BUSM researchers evaluated this matter by taking adult cells from an experimental model and deriving iPS cells from them. They then differentiated the iPS cells into three cell types: neuronal (nerve); hepatocytes (liver); and endothelial (blood vessel lining) cells. These three cell types represent each of the three germ layers present during embryonic development -- mesoderm, ectoderm and endoderm. Cells from these layers differentiate and ultimately develop into the body's tissue and organ systems. Using experiments to mirror the potential clinical use of patient-specific iPS cells in cell therapy, the team transplanted each of the differentiated cells into a genetically identical experimental model and found no signs of an elevated immune response or indications of rejection.

The study results suggest that using patient-specific iPS cells should overcome issues of immune rejection in transplantation, which will be a significant problem for potential embryonic stem cell-derived therapies. Immune rejection in transplantation is treated clinically by immunosuppressive drugs but they can have serious side-effects, including the risk of developing cancer.

"If the use of immunosuppressive drugs can be avoided, as may be the case for patient-specific iPS cell based therapies, it would be preferable. Our results are very promising and future work should be directed at assessing whether tissues derived from human iPS cells will similarly lack immunogenicity," said Boyd.


Story Source:

The above story is based on materials provided by Boston University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Prajna Guha, JohnW. Morgan, Gustavo Mostoslavsky, NeilP. Rodrigues, AshleighS. Boyd. Lack of Immune Response to Differentiated Cells Derived from Syngeneic Induced Pluripotent Stem Cells. Cell Stem Cell, 2013; DOI: 10.1016/j.stem.2013.01.006

Cite This Page:

Boston University Medical Center. "Potential of differentiated iPS cells in cell therapy without immune rejection." ScienceDaily. ScienceDaily, 25 January 2013. <www.sciencedaily.com/releases/2013/01/130125154813.htm>.
Boston University Medical Center. (2013, January 25). Potential of differentiated iPS cells in cell therapy without immune rejection. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/01/130125154813.htm
Boston University Medical Center. "Potential of differentiated iPS cells in cell therapy without immune rejection." ScienceDaily. www.sciencedaily.com/releases/2013/01/130125154813.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
More People Diagnosed With TB In 2013, But There's Good News

More People Diagnosed With TB In 2013, But There's Good News

Newsy (Oct. 22, 2014) The World Health Organizations says TB numbers rose in 2013, but it's partly due to better detection and more survivors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins