Featured Research

from universities, journals, and other organizations

Potential therapeutic target to treat autism, schizophrenia, and epilepsy

Date:
January 28, 2013
Source:
Rockefeller University Press
Summary:
Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin and neurexin proteins, for example, are associated with autism and schizophrenia. A new study reveals that another family of proteins linked to these disorders regulates the function of neuroligins and neurexins in order to suppress the development of inhibitory synapses.

A JCB study reveals that a neuronal protein linked to neurodevelopmental disorders suppresses the development of inhibitory synapses. MDGA1 disrupts the interaction between neuroligin-2 and neurexin-1, two synaptic cell adhesion molecules associated with autism and schizophrenia that promote inhibitory synapse development. In this co-culture assay, a neuron forms multiple presynapses (red) with a COS7 cell (right) expressing neuroligin-2 (blue) but only a few presynapses with a cell (left) coexpressing neuroligin-2 and MDGA1 (green).
Credit: Pettem, K.L., et al. 2013. J. Cell Biol. doi:10.1083/jcb.201206028

Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin and neurexin proteins, for example, are associated with autism and schizophrenia. According to a study in The Journal of Cell Biology, another family of proteins linked to these disorders regulates the function of neuroligins and neurexins in order to suppress the development of inhibitory synapses.

Related Articles


Like neurexins and neuroligins, the neuronal proteins MDGA1 and MDGA2 have been linked to autism and schizophrenia, but their function in neurodevelopment was unknown. Both MDGA proteins localize to the plasma membrane, and their extracellular domains are similar to those of cell adhesion molecules. On the other hand, postsynaptic neuroligin proteins are known to help synapses form by associating with neurexins on presynaptic membranes. Neuroligin-2 specifically boosts the development of inhibitory synapses, whereas neuroligin-1 promotes the development of excitatory synapses.

Ann Marie Craig and colleagues from the University of British Columbia investigated the function of MDGAs using co-culture assays, in which postsynaptic proteins like neuroligin-1 or -2 are expressed in non-neuronal cells and then tested for their ability to induce presynaptic differentiation in neighboring neurons. MDGA1 didn't promote synapse formation in these assays. Instead, it inhibited the ability of neuroligin-2 to promote synapse development. The researchers found that MDGA1's extracellular domains bound to neuroligin-2, blocking its association with neurexin. The same domains were sufficient to inhibit neuroligin-2's synapse-promoting activity. In contrast, MDGA1 didn't show high affinity binding to, or inhibit the function of, neuroligin-1. This suggested that, by inhibiting neuroligin-2, MDGA1 might specifically suppress the development of inhibitory synapses, so Craig and colleagues investigated MDGA1 function in cultured hippocampal neurons.

"Overexpressing MDGA1 in neurons reduced the density of inhibitory synapses without affecting excitatory synapses," Craig says. Knocking down MDGA1, on the other hand, increased inhibitory synapse development but had no effect on excitatory synapses.

"I can't think of any other proteins that specifically suppress inhibitory synapse formation," says Craig. Indeed, very few proteins in general have been identified as negative regulators of synapse development, compared to the many proteins that are known to promote synaptogenesis. The results suggest that function-altering mutations in the MDGA proteins may disrupt the balance of excitatory and inhibitory synapses in the brain, potentially explaining the development of autism and other neurodevelopmental disorders.

"This puts MDGAs in the same pathway as neurexins and neuroligins and strengthens the evidence for the involvement of synaptic organizing proteins in autism and schizophrenia," Craig explains. As well as investigating the function of MDGA2, the researchers want to explore the therapeutic potential of MDGA1 inhibitors, not only against autism and schizophrenia but also for the treatment of epilepsy, in which excitatory and inhibitory synapses are also imbalanced


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katherine L. Pettem, Daisaku Yokomaku, Hideto Takahashi, Yuan Ge, and Ann Marie Craig. Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development. J. Cell Biol, 2013 DOI: 10.1083/jcb.201206028

Cite This Page:

Rockefeller University Press. "Potential therapeutic target to treat autism, schizophrenia, and epilepsy." ScienceDaily. ScienceDaily, 28 January 2013. <www.sciencedaily.com/releases/2013/01/130128133902.htm>.
Rockefeller University Press. (2013, January 28). Potential therapeutic target to treat autism, schizophrenia, and epilepsy. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/01/130128133902.htm
Rockefeller University Press. "Potential therapeutic target to treat autism, schizophrenia, and epilepsy." ScienceDaily. www.sciencedaily.com/releases/2013/01/130128133902.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins