Featured Research

from universities, journals, and other organizations

Epigenetic control of cardiogenesis

Date:
January 29, 2013
Source:
Max-Planck-Gesellschaft
Summary:
Scientists have now been able to demonstrate that non-coding RNA is essential for normal embryonic cardiogenesis.

Defective cardiac function in mouse embryos at 12.5 days, Fendrr mutations (right) in comparison to normal embryos (left). la – left atrium, lv – left ventricle, ra – right atrium, rv – right ventricle.
Credit: Image courtesy of Max-Planck-Gesellschaft

Many different tissues and organs form from pluripotent stem cells during embryonic development. To date it had been known that these processes are controlled by transcription factors for specific tissues. Scientists from the Max Planck Institute for Molecular Genetics in Berlin, in collaboration with colleagues at MIT and the Broad Institute in Boston, have now been able to demonstrate that RNA molecules, which do not act as templates for protein synthesis, participate in these processes as well.

Related Articles


The scientists knocked down a gene for long non-coding RNA molecules (lncRNA) and thereby disrupted the development of the heart to an extent that was lethal to the embryos. Genesis of the ventral body wall was also impaired. It became apparent that the lncRNA participates in controlling transcription factors that themselves are responsible for controlling tissue- and organogenesis. The lncRNA itself thus acts as a modulating factor in these processes.

RNA molecules more than 300 nucleotides long and not exhibiting any protein-coding read frames are denoted as long non-coding RNA. They are known to interact with histone-modifying protein complexes that control the activation state of genes (activatable, active, or repressed), as well as influencing the level of their activity. This occurs, for example, through the transfer of methyl groups to histones, the DNA-packaging proteins. Modifications to the histones such as these can be copied during cell division and thus promulgate the activation state of genes from cell to cell across several stages of differentiation.

Max Planck scientists led by Bernhard Herrmann have proven for the first time that lncRNAs may also be indispensable for embryonic development. This was previously known primarily for transcription factors. They discovered an lncRNA, termed Fendrr, which is specifically formed in the progenitor cells of the heart and ventral body wall. After knocking down Fendrr in a mouse, the heart and ventral body wall were malformed, which was lethal to the embryos. The malformations first arose, however, several days after Fendrr had already been knocked down in the progenitor cells. In the case of transcription factors, the malformations appear, in contrast, after their inactivation for cells in which the gene is normally active.

This delay between the expression of the Fendrr-RNA and the appearance of the malformation can be explained by the specific effect of this new class of regulators. They influence the epigenetic control of target genes, including important transcription factors, namely by binding to histone-modifying protein complexes. Thus, they influence the fate of the descendants of cells in which they themselves were only briefly active.

The scientists now hope to locate further lncRNAs that control cardiogenesis and additional processes of embryonic development in mammals, and shed light on the mechanism of how they operate. Fendrr is probably only one of many lncRNAs that participate in epigenetic control of regulators for tissue- and organogenesis.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Phillip Grote, Lars Wittler, David Hendrix, Frederic Koch, Sandra Währisch, Arica Beisaw, Karol Macura, Gaby Bläss, Manolis Kellis, Martin Werber, Bernhard G. Herrmann. The Tissue-Specific lncRNA Fendrr Is an Essential Regulator of Heart and Body Wall Development in the Mouse. Developmental Cell, 2013; 24 (2): 206 DOI: 10.1016/j.devcel.2012.12.012

Cite This Page:

Max-Planck-Gesellschaft. "Epigenetic control of cardiogenesis." ScienceDaily. ScienceDaily, 29 January 2013. <www.sciencedaily.com/releases/2013/01/130129100247.htm>.
Max-Planck-Gesellschaft. (2013, January 29). Epigenetic control of cardiogenesis. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2013/01/130129100247.htm
Max-Planck-Gesellschaft. "Epigenetic control of cardiogenesis." ScienceDaily. www.sciencedaily.com/releases/2013/01/130129100247.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Amazon Keeps Its Green Thanks To The Sahara Desert

The Amazon Keeps Its Green Thanks To The Sahara Desert

Newsy (Feb. 25, 2015) — Satellite data shows the Amazon rainforest supports its lush flora with a little help from Sahara Desert dust. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) — Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) — A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Fox With Horrifying Injury Rescued and Released Back Into the Wild

Fox With Horrifying Injury Rescued and Released Back Into the Wild

RightThisMinute (Feb. 25, 2015) — This wounded fox knew what she was doing when she wandered into the yard of a nature photographer. The photographer got "Scamp" immediately in the hands of Wildlife Aid and she was released back into the wild in no time. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins