Featured Research

from universities, journals, and other organizations

Caught in the act: Researchers capture key moments in cell death

Date:
February 3, 2013
Source:
Walter and Eliza Hall Institute
Summary:
Scientists have for the first time visualized the molecular changes in a critical cell death protein that force cells to die.

Scientists at the Walter and Eliza Hall Institute have for the first time visualised the molecular changes in a critical cell death protein that force cells to die.
Credit: Image courtesy of Walter and Eliza Hall Institute

Scientists at the Walter and Eliza Hall Institute have for the first time visualised the molecular changes in a critical cell death protein that force cells to die.

Related Articles


The finding provides important insights into how cell death occurs, and could lead to new classes of medicines that control whether diseased cells live or die.

Cell death, called apoptosis, is important for controlling the number of cells in the body. Defects in cell death have been linked to the development of diseases such as cancer and neurodegenerative conditions. Insufficient cell death can cause cancer by allowing cells to become immortal while excessive cell death of neurons may be a cause of neurodegenerative conditions.

Dr Peter Czabotar, Professor Peter Colman and colleagues in the institute's Structural Biology division, together with Dr Dana Westphal from the institute's Molecular Genetics of Cancer division, made the discovery which is published in the latest edition of the journal Cell.

Dr Czabotar said activation of the protein Bax had long been known to be an important event leading to apoptosis, but until now it was not known how this activation occurred. "One of the key steps in cell death is that holes are punched into a membrane in the cell, the mitochondrial membrane," Dr Czabotar said. "Once this happens the cell is going to go on and die. Bax is responsible for punching the holes in the mitochondrial membrane and visualising its activation brings us a step closer to understanding the mechanics of cell death."

Using the Australian Synchrotron, Dr Czabotar and colleagues were able to obtain detailed three-dimensional images of Bax changing shape as it moved from its inactive to active form. The active form ruptures mitochondrial membranes, removing the cell's energy supply and causing cell death.

"By using the powerful X-ray beams created by the synchrotron, we obtained structures of Bax that were really exciting," Dr Czabotar said. "Bax is activated when small protein fragments called BH3-peptides bind to it. We saw that these peptides open up the Bax molecule like a key unlocking a padlock. This unlocked form of Bax can bind to another Bax molecule, which can then form larger Bax complexes that can go on to break up membranes in the cell.

"As well as explaining the detail of how cell death occurs, our research could provide clues about how to design potential new therapeutic agents that target Bax," Dr Czabotar said. "Now that we can see how Bax changes its shape to move from the inactive to the active form, it may be possible to block Bax activation, to prevent cell death in conditions such as neurodegenerative disorders, where illness is caused by excessive cell death. Similarly, agents that drive Bax into its active form could force immortal cells such as cancer cells to die, providing the basis for a potential new class of anti-cancer agents."

The research was supported by the National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation, Cancer Council Victoria, the German Research Foundation, the Leukemia and Lymphoma Society (US) and the Victorian Government.


Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. PeterE. Czabotar, Dana Westphal, Grant Dewson, Stephen Ma, Colin Hockings, W.Douglas Fairlie, ErinnaF. Lee, Shenggen Yao, AdelineY. Robin, BrianJ. Smith, DavidC.S. Huang, RuthM. Kluck, JerryM. Adams, PeterM. Colman. Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell, 2013; 152 (3): 519 DOI: 10.1016/j.cell.2012.12.031

Cite This Page:

Walter and Eliza Hall Institute. "Caught in the act: Researchers capture key moments in cell death." ScienceDaily. ScienceDaily, 3 February 2013. <www.sciencedaily.com/releases/2013/02/130203085132.htm>.
Walter and Eliza Hall Institute. (2013, February 3). Caught in the act: Researchers capture key moments in cell death. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2013/02/130203085132.htm
Walter and Eliza Hall Institute. "Caught in the act: Researchers capture key moments in cell death." ScienceDaily. www.sciencedaily.com/releases/2013/02/130203085132.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins