Featured Research

from universities, journals, and other organizations

Scientists notch a win in war against antibiotic-resistant bacteria

Date:
February 4, 2013
Source:
Wyss Institute for Biologically Inspired Engineering at Harvard
Summary:
A team just won a battle in the war against antibiotic-resistant "superbugs" -- and only time will tell if their feat will turn the tide toward victory. They won this particular battle, or at least gained critical intelligence, not by designing a new antibiotic, but by interfering with the metabolism of the bacterial "bugs" -- E. coli in this case -- and rendering them weaker in the face of existing antibiotics.

Jim Collins and his team found that increasing the ROS production in E. coli cells rendered the bacteria weaker in the face of existing antibiotics.
Credit: iStockphoto/Linde Stewart

A team of scientists just won a battle in the war against antibiotic-resistant "superbugs" -- and only time will tell if their feat is akin to the bacterial "Battle of Gettysburg" that turns the tide toward victory.

They won this particular battle, or at least gained some critical intelligence, not by designing a new antibiotic, but by interfering with the metabolism of the bacterial "bugs" -- E. coli in this case -- and rendering them weaker in the face of existing antibiotics, as reported today in Nature Biotechnology.

It's the "kick 'em when they're down" style of fighting, and the team from Harvard's Wyss Institute for Biologically Inspired Engineering and Boston University used sophisticated computer modeling and biotechnology as their weapons of choice.

"We are in critical need for novel strategies to boost our antibiotic arsenal," said senior author and Wyss Core Faculty member Jim Collins, Ph.D., a pioneer of synthetic biology who is also the William F. Warren Distinguished Professor at Boston University, where he leads the Center for BioDynamics. "With precious few new antibiotics in the pipeline, we are finding new ways to harness and exploit certain aspects of bacterial physiology."

In this case, the team targeted a little understood but key part of bacterial metabolism called ROS production.

ROS, or "reactive oxygen species," include molecules like superoxide and hydrogen peroxide that are natural byproducts of normal metabolic activity. Bacteria usually cope just fine with them, but too many can cause serious damage or even kill the cell. In fact, Collins' team revealed a few years ago the true antibiotic "modis operandi": they kill bacteria in part by ramping up ROS production.

The precise genetic mechanisms by which E. coli produces ROS remain elusive, Collins said, so his team adopted a standard computer model that maps out the way scientists currently understand E. coli metabolism. Collins' team began by adding to this "system-level" metabolic model hundreds of reactions that are known to increase ROS production. Then they deleted various genes to see which were involved in ROS production, honed in on the suspected targets after running thousands of computer simulations, and validated the model in the laboratory -- achieving 80-90% agreement with the model-based predictions.

"The next challenge was to determine if increasing the ROS production by the cell itself would render it more susceptible to death by oxidative, ergo, antibiotic attack," Collins said -- and it did. The team deleted a series of genes that led to increased ROS production in the cell, added different antibiotics and biocides such as bleach -- known cell-killers by way of increasing ROS production -- and the cells died at a much higher rate than the cells without the deleted genes. In short, by interfering with the bacterial metabolism, the antibiotics and biocides were even more lethal to the cells.

"There is no magic bullet for the global health crisis we're experiencing in terms of antibiotic-resistant bacteria," said Don Ingber, M.D., Ph.D., Wyss Founding Director, "and yet there is tremendous hope in the kinds of pioneering systems biology approaches Jim and his team are spearheading."

The team's next steps are to use molecular screening technologies to precisely identify molecules that boost ROS production, Collins said, and to test the approach used in this E. coli study on other kinds of bacteria -- such as the mycobacteria responsible for tuberculosis, a potentially lethal lung disease.

This work was funded by the Wyss Institute for Biologically Inspired Engineering at Harvard University, the National Institutes of Health Director's Pioneer Award Program and the Howard Hughes Medical Institute. In addition to Collins, the research team included: Mark P. Brynildsen, Ph.D., formerly at Boston University and now Assistant Professor in the Department of Chemical and Biological Engineering at Princeton University; Jonathan A. Winkler, Ph.D., a Scientist at Seres Health who used to be a Postdoctoral Scholar at Boston University; Catherine S. Spina, an M.D./Ph.D. candidate at Boston University and Postdoctoral Scholar at the Wyss Institute; and Boston University Research Assistant I. Cody Macdonald.


Story Source:

The above story is based on materials provided by Wyss Institute for Biologically Inspired Engineering at Harvard. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mark P Brynildsen, Jonathan A Winkler, Catherine S Spina, I Cody MacDonald, James J Collins. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nature Biotechnology, 2013; DOI: 10.1038/nbt.2458

Cite This Page:

Wyss Institute for Biologically Inspired Engineering at Harvard. "Scientists notch a win in war against antibiotic-resistant bacteria." ScienceDaily. ScienceDaily, 4 February 2013. <www.sciencedaily.com/releases/2013/02/130204095932.htm>.
Wyss Institute for Biologically Inspired Engineering at Harvard. (2013, February 4). Scientists notch a win in war against antibiotic-resistant bacteria. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/02/130204095932.htm
Wyss Institute for Biologically Inspired Engineering at Harvard. "Scientists notch a win in war against antibiotic-resistant bacteria." ScienceDaily. www.sciencedaily.com/releases/2013/02/130204095932.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins