Featured Research

from universities, journals, and other organizations

Pirate-like flies connect symbiosis to diversity

Date:
February 6, 2013
Source:
Simon Fraser University
Summary:
After a year of studying up close the symbiotic relationship between a mosquito-sized bug and a fungus, a biologist has advanced the scientific understanding of biological diversity. Jeffrey Joy has discovered that symbiosis -- a relationship between two or more organisms that can be parasitic or mutualistic -- is as much the mother of biological diversity as predation and competition.

Fly in pupal stage seen feeding on vegetative matter in fungus lining plant gall created by fly.
Credit: SFU Public Affairs and Media Relations

After a year of studying up close the symbiotic relationship between a mosquito-sized bug and a fungus, a Simon Fraser University biologist has advanced the scientific understanding of biological diversity.

Related Articles


Jeffrey Joy has discovered that symbiosis -- a relationship between two or more organisms that can be parasitic or mutualistic -- is as much the mother of biological diversity as predation and competition.

The Proceedings of the Royal Society of London Series B has just published the post-doctoral researcher's findings online. They advance Joy's previous doctoral work under SFU biologist Bernard Crespi that led to a paper, in the same journal, about the remarkable diversity of plant feeding insects.

Joy's latest paper is "Symbiosis catalyzes niche expansion and diversification."

After comparing the niche and species diversification of two categories of gall-inducing flies, Joy has concluded that prolific diversity can be a hallmark of symbiotic relationships. No bigger than a speck of dust on your fingertip, these flies (Diptera: Cecidomyiidae) are ubiquitous worldwide, with more than 6100 species.

Joy found one group (617 families) of these flies was in a symbiotic relationship with a fungus called Botryosphaeria. Another, much larger control group (2809 families) had no such relationship with the fungus.

Scientists are not yet certain how the fly and fungus came together in the first place. But Joy has discovered that their relationship has evolved at least four different times, since the two first saw symbiosis -- as opposed to love -- at first sight.

Flies involved with the fungi have developed the ability to pick up the fungi, store them in biological pockets and deposit them on plants. There, the flies use the fungi to turn plant tissue into food inside a gall, a tumour-like structure that the flies cause on the plant.

"The flies are like pirates," explains Joy. "They use the fungi as boats to float across a genomic sea and board a plant that is genetically far removed from what they would otherwise be able to feed on."

The fungus, which is a broad-feeding plant pathogen, allows the flies to feed on a greater variety of plants compared to their non-symbiotic brethren.

"Symbiotic lineages of these flies have undergone a more than seven-fold expansion in the range of plants they can feed on relative to the lineages without such fungal symbionts. Also, one genus of gall-inducing flies utilizing fungal symbionts is 50 per cent more diverse than its brethren without the symbiotic relationship."

Joy is as excited about discovering how symbiosis between flies and fungi advances evolutionary theories as he is about discovering the relationship itself.

"The goal of this work was to test predictions of evolutionary theories of diversification and symbiosis," explains Joy. "The theory I observed in action is that the evolution of symbiosis catalyzes niche expansion -- an organism's use of more resources -- and diversification -- increased species in lineages.

"These findings expand our understanding of how biological diversity is generated and how processes, such as symbiosis, lead to some remarkable examples of biology, such as the symbiotic mutualism between clownfish and sea anemone."


Story Source:

The above story is based on materials provided by Simon Fraser University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. B. Joy. Symbiosis catalyses niche expansion and diversification. Proceedings of the Royal Society B: Biological Sciences, 2013; 280 (1756): 20122820 DOI: 10.1098/rspb.2012.2820

Cite This Page:

Simon Fraser University. "Pirate-like flies connect symbiosis to diversity." ScienceDaily. ScienceDaily, 6 February 2013. <www.sciencedaily.com/releases/2013/02/130206094712.htm>.
Simon Fraser University. (2013, February 6). Pirate-like flies connect symbiosis to diversity. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2013/02/130206094712.htm
Simon Fraser University. "Pirate-like flies connect symbiosis to diversity." ScienceDaily. www.sciencedaily.com/releases/2013/02/130206094712.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins