Featured Research

from universities, journals, and other organizations

In the brain, broken down 'motors' cause anxiety

Date:
February 7, 2013
Source:
Cell Press
Summary:
When motors break down, getting where you want to go becomes a struggle. Problems arise in much the same way for critical brain receptors when the molecular motors they depend on fail to operate. Now, researchers have shown these broken motors induce stress and anxiety in mice. The discovery may point the way to new kinds of drugs to treat anxiety and other disorders.

WT on top, KO on bottom. This image shows the transport defect of the serotonin receptor in a KIF13A knock out neuron compared with a wild type neuron.
Credit: Cell Reports, Zhou et al.

When motors break down, getting where you want to go becomes a struggle. Problems arise in much the same way for critical brain receptors when the molecular motors they depend on fail to operate. Now, researchers reporting in Cell Reports, a Cell Press publication, on February 7, have shown these broken motors induce stress and anxiety in mice. The discovery may point the way to new kinds of drugs to treat anxiety and other disorders.

Related Articles


The study in mice focuses on one motor in particular, known as KIF13A, which, according to the new evidence, is responsible for ferrying serotonin receptors. Without proper transportation, those receptors fail to reach the surface of neurons and, as a result, animals show signs of heightened anxiety.

In addition to their implications for understanding anxiety, the findings also suggest that defective molecular motors may be a more common and underappreciated cause of disease.

"Most proteins are transported in vesicles or as protein complexes by molecular motors," said Nobutaka Hirokawa of the University of Tokyo. "As shown in this study, defective motors could cause many diseases."

Scientists know that serotonin and serotonin receptors are involved in anxiety, aggression, and mood. But not much is known about how those players get around within cells. When Hirokawa's team discovered KIF13A at high levels in the brain, they wondered what it did.

The researchers discovered that mice lacking KIF13A show greater anxiety in both open-field and maze tests and suggest that this anxious behavior may stem from an underlying loss of serotonin receptor transport, which leads to a lower level of expression of those receptors in critical parts of the brain.

"Collectively, our results suggest a role for this molecular motor in anxiety control," the researchers wrote. Hirokawa says the search should now be on for anti-anxiety drug candidates aimed at restoring the brain's serotonin receptor transport service.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ruyun Zhou, Shinsuke Niwa, Laurent Guillaud, Ying Tong, Nobutaka Hirokawa. A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin Type 1A Receptor. Cell Reports, 07 February 2013 DOI: 10.1016/j.celrep.2013.01.014

Cite This Page:

Cell Press. "In the brain, broken down 'motors' cause anxiety." ScienceDaily. ScienceDaily, 7 February 2013. <www.sciencedaily.com/releases/2013/02/130207131558.htm>.
Cell Press. (2013, February 7). In the brain, broken down 'motors' cause anxiety. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2013/02/130207131558.htm
Cell Press. "In the brain, broken down 'motors' cause anxiety." ScienceDaily. www.sciencedaily.com/releases/2013/02/130207131558.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins