Featured Research

from universities, journals, and other organizations

Scientists discover how animals taste, and avoid, high salt concentrations

Date:
February 13, 2013
Source:
Columbia University Medical Center
Summary:
Researchers have discovered how the tongue detects high concentrations of salt, the first step in a salt-avoiding behavior common to most mammals. The findings could serve as a springboard for the development of taste modulators to help control the appetite for a high-salt diet and reduce the ill effects of too much sodium.

Horse licking salt. Scientists have discovered how the tongue detects high concentrations of salt (think seawater levels, not potato chips), the first step in a salt-avoiding behavior common to most mammals.
Credit: © Hunta / Fotolia

For consumers of the typical Western diet -- laden with levels of salt detrimental to long-term health -- it may be hard to believe that there is such a thing as an innate aversion to very high concentrations of salt.

Related Articles


But Charles Zuker and colleagues at Columbia University Medical Center have discovered how the tongue detects high concentrations of salt (think seawater levels, not potato chips), the first step in a salt-avoiding behavior common to most mammals.

The findings could serve as a springboard for the development of taste modulators to help control the appetite for a high-salt diet and reduce the ill effects of too much sodium. The findings were published February 13 online in Nature.

The sensation of saltiness is unique among the five basic tastes. Whereas mammals are always attracted to the tastes of sweet and umami, and repelled by sour and bitter, their behavioral response to salt dramatically changes with concentration.

"Salt taste in mammals can trigger two opposing behaviors," said Charles Zuker, PhD, professor in the Departments of Biochemistry & Molecular Biophysics and of Neuroscience at Columbia University College of Physicians & Surgeons. "Mammals are attracted to low concentrations of salt; they will choose a salty solution over a salt-free one. But they will reject highly concentrated salt solutions, even when salt-deprived."

Over the past 15 years, the receptors and other cells on the tongue responsible for detecting sweet, sour, bitter, and umami tastes -- as well as low concentrations of salt -- have been uncovered largely through the efforts of Dr. Zuker and his collaborator Nicholas Ryba from the National Institute of Dental and Craniofacial Research.

"But we didn't understand what was behind the aversion to high concentrations of salt," said Yuki Oka, a postdoctoral fellow in Dr. Zuker's laboratory and the lead author of the study.

The researchers expected high-salt receptors to reside in cells committed only to detecting high salt. "Over the years our studies have shown that each taste quality -- sweet, bitter, sour, umami, and low-salt -- is mediated by different cells," Dr. Ryba said. "So we thought there must be different taste receptor cells for high-salt. But unexpectedly, Dr. Oka found high salt is mediated by cells we already knew."

In experiments conducted by Dr. Oka, the researchers found that high salt concentrations activate previously discovered bitter- and sour-sensing cells. When one of these cell types was silenced and made incapable of sending messages to the brain, aversion to high-salt solutions was reduced, but not eliminated. When both cell types were silenced, the mammals completely lost their aversion to high-salt solutions, even showing unrestrained attraction to exceedingly salty solutions equivalent to those of seawater.

For mammals, ingesting high concentrations of seawater can lead to extreme dehydration, kidney failure, and death. With two aversion pathways, Dr. Oka said, animals have a safeguard to make sure that high salt is always aversive.

Now that all the salt pathways have been identified, Dr. Oka said, it may be possible to use that knowledge to make low concentrations of salt taste saltier, to reduce NaCl intake. It also may be possible to make the taste of KCl (potassium chloride), which has fewer long-term health effects than sodium chloride, more appealing to encourage its use as a salt substitute.

Taste Cells Will Lead to Understanding Where Sensations Are in the Brain

Though the commercial implications of the work are clear, the researchers' objective is not to find ways to alter our tastes, but to understand how we perceive the sensory world. How does the detection of high salt concentrations on the tongue lead to a decision to turn away from a source of water? How can we tell the difference between chocolate cake and pumpkin pie? How do our taste sensations change over time? The answers are in the firing of neurons in the brain.

With the taste receptor cells in hand, the researchers have recently turned to brain imaging, mapping the neurons that receive information from the tongue's taste buds. The map was a surprise. Instead of finding the neurons scattered, as the taste receptor cells on the tongue are, they found discrete hotspots of the brain for each of four tastes: sweet, bitter, umami, and salty (sour has not yet been located).

Ultimately, they hope to understand how the firing of these neurons produces the sensations we call tastes.


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuki Oka, Matthew Butnaru, Lars von Buchholtz, Nicholas J. P. Ryba, Charles S. Zuker. High salt recruits aversive taste pathways. Nature, 2013; DOI: 10.1038/nature11905

Cite This Page:

Columbia University Medical Center. "Scientists discover how animals taste, and avoid, high salt concentrations." ScienceDaily. ScienceDaily, 13 February 2013. <www.sciencedaily.com/releases/2013/02/130213131837.htm>.
Columbia University Medical Center. (2013, February 13). Scientists discover how animals taste, and avoid, high salt concentrations. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/02/130213131837.htm
Columbia University Medical Center. "Scientists discover how animals taste, and avoid, high salt concentrations." ScienceDaily. www.sciencedaily.com/releases/2013/02/130213131837.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins