Featured Research

from universities, journals, and other organizations

Gene invaders are stymied by a cell’s genome defense

Date:
February 14, 2013
Source:
University of California, San Francisco (UCSF)
Summary:
Gene wars rage inside our cells, with invading DNA regularly threatening to subvert our human blueprint. Now, researchers have discovered a molecular machine that helps protect a cell's genes against these DNA interlopers.

If unrestrained, transposons replicate and insert themselves randomly throughout the genome, and they can be harmful if they insert themselves into normal genes.
Credit: Illustration by Phillip Dumesic, UCSF

Gene wars rage inside our cells, with invading DNA regularly threatening to subvert our human blueprint. Now, building on Nobel-Prize-winning findings, UC San Francisco researchers have discovered a molecular machine that helps protect a cell's genes against these DNA interlopers.

The machine, named SCANR, recognizes and targets foreign DNA. The UCSF team identified it in yeast, but given the similarity of yeast and human cells, comparable mechanisms might also be found in humans, where they might serve to lower the burden of inherited human disease and death, the researchers said.

The targets of SCANR are small stretches of DNA called transposons, a name that conjures images of alien scourges. But transposons are real, and to some newborns, life threatening. Found inside the genomes of organisms as simple as bacteria and as complex as humans, they are in a way alien -- at some point, each was imported into its host's genome from another species.

Unlike an organism's native genes, which are reproduced a single time during cell division, transposons -- also called jumping genes -- replicate multiple times, and insert themselves at random places within the DNA of the host cell. When transposons insert themselves in the middle of an important gene, they may cause malfunction, disease or birth defects.

But just as the immune system has ways of distinguishing what is part of the body and what is foreign and does not belong, researchers led by UCSF's Hiten Madhani, MD, PhD, discovered in SCANR a novel way through which the genetic machinery within a cell's nucleus recognizes and targets transposons. The study was published online February 13 in the journal Cell.

"We've known that only a fraction of human inherited diseases are caused by these mobile genetic elements," Madhani said. "Now we've found that cells use a step in gene expression to distinguish 'self' from 'non-self' and to halt the spread of transposons."

Gene Wars Span Eons

Transposons have been barging into genomes and crossing species boundaries throughout evolution. Rapidly evolving bacterial species often use them to transmit antibiotic resistance to one another.

Nearly half of the DNA in the human genome consists of transposons, and the percentage can potentially creep upward with every generation. That's because nearly 20 percent of transposons are capable of replicating in a way that is unconstrained by the normal rules of DNA replication during cell division -- although through generations over time, most have become inactivated and no longer pose a threat.

While humans are riddled with transposons, compared to some organisms they've gotten off easy, according to Madhani, a professor of biochemistry and biophysics at UCSF. The water lily's genome is 99 percent derived from transposons. The lowly salamander has about the same number of genes as humans, but in some species the genome is nearly 40 times bigger, due to all the inserted, replicating transposons. To accommodate this DNA, a salamander's cells are large in comparison to a human's cells.

The scientists' discovery of SCANR and how it targets transposons in the yeast Cryptococcus neoformans builds upon the Nobel-Prize-winning discovery of jumping genes by maize geneticist Barbara McClintock, and the Nobel-prize-winning discovery by Richard Roberts and Phillip Sharp that parts of a single gene may be separated along chromosomes by intervening bits of DNA, called introns. Introns are transcribed into RNA from DNA but then are spliced out of the instructions for building proteins.

In the current study, the researchers discovered that the cell's splicing machinery stalls when it gets to transposon introns. SCANR recognizes this glitch and prevents transposon replication by triggering the production of "small interfering RNA" molecules, which neutralize the transposon RNA. The earlier discovery by Andrew Fire and Craig Mello of the phenomenon of RNA interference, a feature of this newly identified transposon targeting, also led to a Nobel Prize.

"Scientists might find that many of the peculiar ways in which genes are expressed differently in higher organisms are, like intron splicing in the case of SCANR, useful in distinguishing and defending 'self' genes from 'non-self' genes," Madhani said.

Phillip Dumesic, an MD/PhD student and first author of the study, conducted many of the key experiments. Other UCSF co-authors include graduate students Prashanthi Natarajan and Benjamin Schiller, and postdoctoral fellow Changbin Chen, PhD. Researchers from the Whitehead Institute of Medical Research in Cambridge, Mass., and from the Scripps Research Institute in La Jolla, Calif., contributed to the research.

The National Institutes of Health funded the study.


Story Source:

The above story is based on materials provided by University of California, San Francisco (UCSF). The original article was written by Jeffrey Norris. Note: Materials may be edited for content and length.


Journal Reference:

  1. PhillipA. Dumesic, Prashanthi Natarajan, Changbin Chen, InesA. Drinnenberg, BenjaminJ. Schiller, James Thompson, JamesJ. Moresco, JohnR. Yates, DavidP. Bartel, HitenD. Madhani. Stalled Spliceosomes Are a Signal for RNAi-Mediated Genome Defense. Cell, 2013; DOI: 10.1016/j.cell.2013.01.046

Cite This Page:

University of California, San Francisco (UCSF). "Gene invaders are stymied by a cell’s genome defense." ScienceDaily. ScienceDaily, 14 February 2013. <www.sciencedaily.com/releases/2013/02/130214132629.htm>.
University of California, San Francisco (UCSF). (2013, February 14). Gene invaders are stymied by a cell’s genome defense. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/02/130214132629.htm
University of California, San Francisco (UCSF). "Gene invaders are stymied by a cell’s genome defense." ScienceDaily. www.sciencedaily.com/releases/2013/02/130214132629.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins