Featured Research

from universities, journals, and other organizations

Not your conventional nucleic acids: Spherical nucleic acids have novel properties that are perfect for biomedical applications

Date:
February 17, 2013
Source:
Northwestern University
Summary:
Scientists have invented and developed a powerful nanomaterial that could revolutionize biomedicine: spherical nucleic acids (SNAs). The novel arrangement of nucleic acids imparts interesting chemical and physical properties that are very different from conventional nucleic acids. Potential applications include using SNAs to carry nucleic acid-based therapeutics to the brain for the treatment of glioblastoma, the most aggressive form of brain cancer, as well as other neurological disorders such as Alzheimer's and Parkinson's diseases.

Northwestern University's Chad A. Mirkin, a world-renowned leader in nanotechnology research and its application, has invented and developed a powerful material that could revolutionize biomedicine: spherical nucleic acids (SNAs).

Mirkin will discuss SNAs and their applications in therapeutics and diagnostics in a talk titled "Nanostructures in Biology and Medicine" at the American Association for the Advancement of Science (AAAS) annual meeting in Boston. His presentation is part of the symposium "Convergence of Physical, Engineering, and Life Sciences: Next Innovation Economy."

Potential applications include using SNAs to carry nucleic acid-based therapeutics to the brain for the treatment of glioblastoma, the most aggressive form of brain cancer, as well as other neurological disorders such as Alzheimer's and Parkinson's diseases. Mirkin is aggressively pursuing treatments for such diseases with Alexander H. Stegh, an assistant professor of neurology at Northwestern's Feinberg School of Medicine.

"These structures are really quite spectacular and incredibly functional," Mirkin said. "People don't typically think about DNA in spherical form, but this novel arrangement of nucleic acids imparts interesting chemical and physical properties that are very different from conventional nucleic acids."

Spherical nucleic acids consist of densely packed, highly oriented nucleic acids arranged on the surface of a nanoparticle, typically gold or silver. The tiny non-toxic balls, each roughly 15 nanometers in diameter, can do things the familiar but more cumbersome double helix can't do:

  • SNAs can naturally enter cells and effect gene knockdown, making SNAs a superior tool for treating genetic diseases using gene regulation technology.
  • SNAs can easily cross formidable barriers in the human body, including the blood-brain barrier and the layers that make up skin.
  • SNAs don't elicit an immune response, and they resist degradation, resulting in longer lifetimes in the body.

"The field of medicine needs new constructs and strategies for treating disease," Mirkin said. "Many of the ways we treat disease are based on old methods and materials. Nanotechnology offers the ability to rapidly create new structures with properties that are very different from conventional forms of matter."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He is director of Northwestern's International Institute for Nanotechnology (IIN).

Last year, Mirkin and Amy S. Paller, M.D., chair of dermatology and professor of pediatrics at Feinberg, were the first to demonstrate the use of commercial moisturizers to deliver gene regulation technology for skin cancer therapy. The drug, consisting of SNAs, penetrated the skin's layers and selectively targeted disease-causing genes while sparing normal genes.

"We now can go after a whole new set of diseases," Mirkin said. "Thanks to the Human Genome Project and all of the genomics research over the last two decades, we have an enormous number of known targets. And we can use the same tool for each, the spherical nucleic acid. We simply change the sequence to match the target gene. That's the power of gene regulation technology."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Not your conventional nucleic acids: Spherical nucleic acids have novel properties that are perfect for biomedical applications." ScienceDaily. ScienceDaily, 17 February 2013. <www.sciencedaily.com/releases/2013/02/130217084547.htm>.
Northwestern University. (2013, February 17). Not your conventional nucleic acids: Spherical nucleic acids have novel properties that are perfect for biomedical applications. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/02/130217084547.htm
Northwestern University. "Not your conventional nucleic acids: Spherical nucleic acids have novel properties that are perfect for biomedical applications." ScienceDaily. www.sciencedaily.com/releases/2013/02/130217084547.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins