Featured Research

from universities, journals, and other organizations

Multiple tests needed to detect infection in low birth-weight newborns, study suggests

Date:
February 20, 2013
Source:
Case Western Reserve University
Summary:
New research finds that cultures commonly used to detect bacterial infections in low birth-weight newborns with early onset sepsis may actually overlook some germs.

New research by Case Western Reserve University School of Dental Medicine and Yale University School of Medicine finds that cultures commonly used to detect bacterial infections in low birth-weight newborns with early onset sepsis may actually overlook some germs.

Related Articles


The research done at Case Western Reserve supports the need for multiple detection methods, such as DNA genomic analyses and other independent culture technologies, to identify bacteria that culturing may miss, said Yiping Han, professor of Periodontics and Reproductive Biology at the Case Western Reserve dental school and the corresponding author on the study.

An analysis of 44 prematurely-born babies, the majority of whom were diagnosed with early onset sepsis, was published in the journal PLOS ONE article, "Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis."

"Culture independent technology has broadened our scope of understanding human pathogens," said Han. The testing, under the lead investigator and Case Western Reserve postdoctoral scholar Xiaowei Wang, analyzed umbilical cord blood and amniotic fluid samples from Yale University medical school.

The researchers found more than 20 bacterial species not discovered using standard culturing. Some of the uncultured species appeared in both the cord blood and amniotic fluid samples.

The uncultured bacteria were detected with DNA genomic analysis that Han's lab had used in a prior study that discovered the link between oral bacteria that causes still- or premature-births due to infected amniotic fluid that is supposed to be a sterile environment.

"By using molecular biology identity tools this is the first time we have shown that same microbes could move from the amniotic fluid into the fetal bloodstream," said Dr. Catalin S. Buhimschi, MD, from Yale University's Department of Obstetrics, Gynecology and Reproductive Sciences.

The bacteria enter the fetus' blood after the fetus ingests the amniotic fluid in the lungs or gastrointestinal tract.

Han said the discovery is further evidence of how oral bacteria travel into the maternal blood stream and eventually through the cord blood and amniotic fluid to the baby.

Researchers detected such uncultured bacteria as Fusobacterium nucleatum, which has a key-like mechanism that opens blood-vessel and cell walls to infect other areas of the body.

Han said DNA testing techniques were able for the first time to detect the oral bacteria -- Fusobacterium nucleatum, Begeyalla and Sneathia sanguinegens -- that brought on early neonatal sepsis and put newborns at risk of dying shortly after birth. Among these, Fusobacterium nucleatum was found at the same high frequency as the well-known Escherichia coli, putting the former on the same importance scale as the latter.

Early sepsis develops within 72 hours of birth. Its symptoms are varied, from apnea to low body temperatures. Four of every 1,000 births in the U.S. develop the infections.

Baby's blood or spinal fluid is cultured for bacteria. A positive culture confirms sepsis, but many babies exhibit the symptoms of infection unconfirmed by culturing.

Standard management is to administer antibiotics for three days while doctors monitor the response to treatment.

Dr. Vineet Bhandari, MD, DM, associate professor of Pediatrics, Obstetrics, Gynecology, and Reproductive Sciences and director of the Program in Perinatal Research at the Yale University School of Medicine, raises concerns that widespread use of antibiotics could increase antibiotic-resistant bacteria when the exact bacteria are not targeted.

"This research is important in finding the right bug to target for antibiotics," Bhandari said.

Detecting bacteria is also more complicated if the mother has an infection prior to birth and is treated with antibiotics, the neonatologist said. Bhandari explained that treating the mother eliminates many cultured bacteria, making it difficult to determine what is infecting the baby.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaowei Wang, Catalin S. Buhimschi, Stephanie Temoin, Vineet Bhandari, Yiping W. Han, Irina A. Buhimschi. Comparative Microbial Analysis of Paired Amniotic Fluid and Cord Blood from Pregnancies Complicated by Preterm Birth and Early-Onset Neonatal Sepsis. PLoS ONE, 2013; 8 (2): e56131 DOI: 10.1371/journal.pone.0056131

Cite This Page:

Case Western Reserve University. "Multiple tests needed to detect infection in low birth-weight newborns, study suggests." ScienceDaily. ScienceDaily, 20 February 2013. <www.sciencedaily.com/releases/2013/02/130220184953.htm>.
Case Western Reserve University. (2013, February 20). Multiple tests needed to detect infection in low birth-weight newborns, study suggests. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/02/130220184953.htm
Case Western Reserve University. "Multiple tests needed to detect infection in low birth-weight newborns, study suggests." ScienceDaily. www.sciencedaily.com/releases/2013/02/130220184953.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins