Featured Research

from universities, journals, and other organizations

Earthquakes in small laboratory samples

Date:
February 21, 2013
Source:
Universidad de Barcelona
Summary:
Mechanical failure of materials is a complex phenomenon underlying many accidents and natural disasters ranging from the fracture of small devices to earthquakes. Despite the vast separation of spatial, temporal, energy, and strain-rate scales, and the differences in geometry, it has been proposed that laboratory experiments on brittle fracture in heterogeneous materials can be a model for earthquake occurrence.

Mechanical failure of materials is a complex phenomenon underlying many accidents and natural disasters ranging from the fracture of small devices to earthquakes. Despite the vast separation of spatial, temporal, energy, and strain-rate scales, and the differences in geometry, it has been proposed that laboratory experiments on brittle fracture in heterogeneous materials can be a model for earthquake occurrence.

A study led by researchers from the University of Barcelona, and published on the journal Physical Review Letters, has carried out experiments with a material loaded under compression that reproduces the four main statistical laws of seismicity: the Gutenberg-Ritcher law, the Omori's law, the distribution of waiting times between consecutive events and the productivity law.

The researcher Eduard Vives, from the Faculty of Physics of the UB, led the research in which collaborated several researchers from the Faculty, Xavier Illa, Antoni Planes and Jordi Baró (the main author), as well as Álvaro Corral, from the Centre for Mathematical Research (CERCA -- Government of Catalonia), and researchers from the University of Cambridge, the University of Viena and the Institute for Scientific and Technological Research of San Luis Potosi (Mexico).

The material, analyzed by means of a device developed by the Materials Technological Unit of the Scientific and Technological Centers of the UB, is a porous glass (40 % porosity), designed for industrial applications, and named Vycor®. The sample, about 5mm, was introduced between two plates and subjected to uniaxial compression that increases linearly until the sample fragments into pieces. Acoustic sensors were place on the compression plates. They will function as seismographs which measure ultrasonic acoustic waves and detect sample's fractures.

"The experiment carried out simulates the emergence of a new fault," explains the UB researcher Eduard Vives. "By this means -- he continues -- , we observed time distribution, which at the laboratory corresponds to some hours and in earthquakes to thousands of years." On the contrary, seismology study the space statistical changes considering the data obtained from high seismic activity areas, as California, and low activity ones. According to the researcher, "this symmetry in space and time reveals that it is probable that earthquakes behavior corresponds to any kind of self-organized criticality -- as some theories state -- , and if it could be proved, it would be a great advance to apply existent theories.

Several works have previously tried to establish comparisons between earthquakes and laboratory fracture of materials, mainly using rocks, but results were not completely reliable, as they do not reproduce all the properties of earthquakes. "This material allows to carried out experiments that control several parameters, such as or magnitude or speed," concludes Vives.

Four laws of statistical seismology

The results of the experiments performed with this material fulfill the four fundamental laws of statistical seismology. On the one hand, the energy detected by acoustic emissions varies as the Gutenberg-Ritcher law affirms; this law states that the number of earthquakes as a function of their radiated energy decreases as a power law.

To get a general idea of the different scales, it is important to remember that a big earthquake (magnitude 8) equals 1,000 Hiroshima bombs, whereas the maximum energy measured in the laboratory equals the fission energy of one uranium atom. This different magnitude corresponds, approximately, to a factor of 1027.

Another experiment made with this material studied the number of aftershocks produced after a big fracture and it has been observed that it decays with time, so the tendency to follow Omori's law is clear. "Laboratory maximum rate of aftershocks with time corresponds to some hours, whereas in earthquakes it last more than one hundred years," remarks the UB researcher.

The third law of statistical seismology is the one related to waiting times, which relates the time between two consecutive earthquakes. In this case, laboratory results obtained were compared to the ones got from the earthquakes happened in Southern California, and "although different scales, similarity is higher," affirms Vives. Finally, the productivity law was also proved, which relates the rate of aftershocks triggered by a mainshock to its magnitude: larger-magnitude earthquakes produce on average more aftershocks.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jordi Baró, Álvaro Corral, Xavier Illa, Antoni Planes, Ekhard K. H. Salje, Wilfried Schranz, Daniel E. Soto-Parra, Eduard Vives. Statistical Similarity between the Compression of a Porous Material and Earthquakes. Physical Review Letters, 2013; 110 (8) DOI: 10.1103/PhysRevLett.110.088702

Cite This Page:

Universidad de Barcelona. "Earthquakes in small laboratory samples." ScienceDaily. ScienceDaily, 21 February 2013. <www.sciencedaily.com/releases/2013/02/130221084714.htm>.
Universidad de Barcelona. (2013, February 21). Earthquakes in small laboratory samples. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2013/02/130221084714.htm
Universidad de Barcelona. "Earthquakes in small laboratory samples." ScienceDaily. www.sciencedaily.com/releases/2013/02/130221084714.htm (accessed August 30, 2014).

Share This




More Earth & Climate News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) — Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Raw: Small Volcanic Eruption in Iceland

Raw: Small Volcanic Eruption in Iceland

AP (Aug. 29, 2014) — Icelandic authorities briefly raised the aviation warning code to red on Friday during a small eruption at the Holuhraun lava field in the Bardabunga volcano system. (Aug. 29) Video provided by AP
Powered by NewsLook.com
As Drought Continues LA "water Police" Fight Waste

As Drought Continues LA "water Police" Fight Waste

AFP (Aug. 29, 2014) — In the midst of a historic drought, Los Angeles is increasing efforts to go after people who waste water. Five water conservation "cops" drive around the city every day educating homeowners about the drought. Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins