Featured Research

from universities, journals, and other organizations

Now hear this: Forerunners of inner-ear cells that enable hearing identified

Date:
February 26, 2013
Source:
Stanford University Medical Center
Summary:
Researchers have identified a group of progenitor cells in the inner ear that can become the sensory hair cells and adjacent supporting cells that enable hearing.

Researchers at the Stanford University School of Medicine have identified a group of progenitor cells in the inner ear that can become the sensory hair cells and adjacent supporting cells that enable hearing. Studying these progenitor cells could someday lead to discoveries that help millions of Americans suffering from hearing loss due to damaged or impaired sensory hair cells.

"It's well known that, in mammals, these specialized sensory cells don't regenerate after damage," said Alan Cheng, MD, assistant professor of otolaryngology. (In contrast, birds and fish are much better equipped: They can regain their sensory cells after trauma caused by noise or certain drugs.) "Identifying the progenitor cells, and the cues that trigger them to become sensory cells, will allow us to better understand not just how the inner ear develops, but also how to devise new ways to treat hearing loss and deafness."

The research will be published online Feb. 26 in Development. Cheng is the senior author. Former medical student Taha Jan, MD, and postdoctoral scholar Renjie Chai, PhD, share lead authorship of the study. Roel Nusse, PhD, a professor of developmental biology, is a co-senior author of the research.

The inner ear is a highly specialized structure for gathering and transmitting vibrations in the air. The auditory compartment, called the cochlea, is a snail-shaped cavity that houses specialized cells with hair-like projections that sense vibration, much like seaweed waving in the ocean current. These hair cells are responsible for both hearing and balance, and are surrounded by supporting cells that are also critical for hearing.

Twenty percent of all Americans, and up to 33 percent of those ages 65-74, suffer from hearing loss. Hearing aids and, in severe cases, cochlear implants can be helpful for many people, but neither address the underlying cause: the loss of hair cells in the inner ear. Cheng and his colleagues identified a class of cells called tympanic border cells that can give rise to hair cells and the cells that support them during a phase of cochlear maturation right after birth.

"Until now, these cells have had no clear function," said Cheng. "We used several techniques to define their behavior in cell culture dishes, as well as in mice. I hope these findings will lead to new areas of research to better understand how our ears develop and perhaps new ways to stimulate the regeneration of sensory cells in the cochlea."

Cheng recently received a grant from the California Institute for Regenerative Medicine to study the limited regeneration of the same sensory hair cells that occur in a different region of the inner ear called the vestibular system, which helps us balance. Lessons learned there may also translate into aid for patients with hearing loss.

Although regeneration of sensory hair cells does not happen naturally, recent research has suggested that the mammalian ear may harbor a sub-population of -- presumably inactive -- progenitor cells. The research team led by Cheng and Nusse used a strain of laboratory mice that allowed the scientists to track the activation of a cell-signaling pathway driven by a protein called Wnt. The Wnt pathway has previously been shown to be involved in many developmental functions, and it drives the renewal and proliferation of many types of stem cells.

"We wanted to investigate the Wnt pathway because of its tremendous influence in the development and regeneration of many other organs," said Cheng.

The researchers found that tympanic border cells, or TBCs, which form a thin layer under the sensory epithelium, are actively dividing in mice during the first three weeks after birth (the time corresponding to about the first trimester of human development, during which the ability to hear is established) and give rise to at least a subset of sensory and non-sensory cells in the ear. They also divided vigorously in isolated cochlea when the Wnt pathway was activated, and stopped when the pathway was inhibited. Finally, the researchers showed that purified TBCs were able to specialize into hair cells and support cells when cultured in a laboratory dish.

"It's surprising to think that these progenitor cells are among this largely underappreciated group of cells," said Cheng. "This study also highlights that, even in mice, there is a lot of maturation occurring after birth as hearing develops. There's clearly a lot more to be understood. Next we'd like to look at these cells in models of hearing loss. Do they have the ability to regenerate? If so, under what conditions?"


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. A. Jan, R. Chai, Z. N. Sayyid, R. van Amerongen, A. Xia, T. Wang, S. T. Sinkkonen, Y. A. Zeng, J. R. Levin, S. Heller, R. Nusse, A. G.-L. Cheng. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development, 2013; 140 (6): 1196 DOI: 10.1242/dev.087528

Cite This Page:

Stanford University Medical Center. "Now hear this: Forerunners of inner-ear cells that enable hearing identified." ScienceDaily. ScienceDaily, 26 February 2013. <www.sciencedaily.com/releases/2013/02/130226081234.htm>.
Stanford University Medical Center. (2013, February 26). Now hear this: Forerunners of inner-ear cells that enable hearing identified. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/02/130226081234.htm
Stanford University Medical Center. "Now hear this: Forerunners of inner-ear cells that enable hearing identified." ScienceDaily. www.sciencedaily.com/releases/2013/02/130226081234.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins