Featured Research

from universities, journals, and other organizations

Researchers test holographic technique for restoring vision

Date:
February 26, 2013
Source:
American Technion Society
Summary:
Researchers are testing the power of holography to artificially stimulate cells in the eye, with hopes of developing a new strategy for bionic vision restoration. Computer-generated holography, they say, could be used in conjunction with a technique called optogenetics, which uses gene therapy to deliver light-sensitive proteins to damaged retinal nerve cells. In conditions such as retinitis pigmentosa (RP), these light-sensing cells degenerate and lead to blindness.

Concept illustration of a schematic design for a glasses-mounted holographic retinal prosthesis.
Credit: Roman Kanevsky, Inna Gefen & Shy Shoham

Researchers led by biomedical engineering Professor Shy Shoham of the Technion-Israel Institute of Technology are testing the power of holography to artificially stimulate cells in the eye, with hopes of developing a new strategy for bionic vision restoration.

Computer-generated holography, they say, could be used in conjunction with a technique called optogenetics, which uses gene therapy to deliver light-sensitive proteins to damaged retinal nerve cells. In conditions such as Retinitis Pigmentosa (RP) -- a condition affecting about one in 4000 people in the United States -- these light-sensing cells degenerate and lead to blindness.

"The basic idea of optogenetics is to take a light-sensitive protein from another organism, typically from algae or bacteria, and insert it into a target cell, and that photosensitizes the cell," Shoham explained.

Intense pulses of light can activate nerve cells newly sensitized by this gene therapy approach. But Shoham said researchers around the world are still searching for the best way to deliver the light patterns so that the retina "sees" or responds in a nearly normal way.

The plan is to someday develop a prosthetic headset or eyepiece that a person could wear to translate visual scenes into patterns of light that stimulate the genetically altered cells.

In their paper in the Feb. 26 issue of Nature Communications, the Technion researchers show how light from computer-generated holography could be used to stimulate these repaired cells in mouse retinas. The key, they say, is to use a light stimulus that is intense, precise, and can trigger activity across a variety of cells all at once.

"Holography, what we're using, has the advantage of being relatively precise and intense," Shoham said. "And you need those two things to see."

The researchers turned to holography after exploring other options, including laser deflectors and digital displays used in many portable projectors to stimulate these cells. Both methods had their drawbacks, Shoham said.

Digital light displays can stimulate many nerve cells at once, "but they have low light intensity and very low light efficiency," Shoham said. The genetically repaired cells are less sensitive to light than normal healthy retinal cells, so they preferably need a bright light source like a laser to be activated.

"Lasers give intensity, but they can't give the parallel projection" that would simultaneously stimulate all of the cells needed to see a complete picture, Shoham noted. "Holography is a way of getting the best of both worlds."

The researchers have tested the potential of holographic stimulation in retinal cells in the lab, and have done some preliminary work with the technology in living mice with damaged retinal cells. The experiments show that holography can provide reliable and simultaneous stimulation of multiple cells at millisecond speeds.

But implementing a holographic prosthesis in humans is far in the future, Shoham cautioned.

His team is exploring other ways, aside from optogenetics, to activate damaged nerve cells. For instance, they are also experimenting with ultrasound for activating retinal and brain tissue.

And Shoham said holography itself "also provides a very interesting path toward three-dimensional stimulation, which we don't use so much in the retina, but is very interesting in other projects where it allow us to stimulate 3-D brain tissue."

In mid-February, the U.S. Food and Drug Administration approved the first artificial retina and retinal prosthesis, which works in a different fashion than the Technion project. The FDA-approved device, the Argus II, uses an artificial "retina" consisting of electrodes, and a glasses-like prosthesis to transmit light signals to the electrodes.

"I think Shy's lab is very smart to pursue many methods of restoring vision," said Eyal Margalit, a retinal disease specialist at the University of Nebraska Medical Center. He said researchers around the world are also looking for ways to use stem cells to replace damaged retinal cells, to transplant entire layers of healthy retinal cells, and in some cases "bypass the eye entirely, and stimulate the cortex of the brain directly" to restore lost vision.

Shoham's co-authors on the paper included Dr. Inna Reutsky-Gefen, Lior Golan, Dr. Nairouz Farah, Adi Schejter, Limor Tsur, and Dr. Inbar Brosh.


Story Source:

The above story is based on materials provided by American Technion Society. The original article was written by Kevin Hattori. Note: Materials may be edited for content and length.


Journal Reference:

  1. Inna Reutsky-Gefen, Lior Golan, Nairouz Farah, Adi Schejter, Limor Tsur, Inbar Brosh, Shy Shoham. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nature Communications, 2013; 4: 1509 DOI: 10.1038/ncomms2500

Cite This Page:

American Technion Society. "Researchers test holographic technique for restoring vision." ScienceDaily. ScienceDaily, 26 February 2013. <www.sciencedaily.com/releases/2013/02/130226134259.htm>.
American Technion Society. (2013, February 26). Researchers test holographic technique for restoring vision. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2013/02/130226134259.htm
American Technion Society. "Researchers test holographic technique for restoring vision." ScienceDaily. www.sciencedaily.com/releases/2013/02/130226134259.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins