Featured Research

from universities, journals, and other organizations

Linking insulin to learning: Insulin-like molecules play critical role in learning and memory

Date:
February 26, 2013
Source:
Harvard University
Summary:
Though it's most often associated with disorders like diabetes, scientists have shown how the pathway of insulin and insulin-like peptides plays another critical role in the body -- helping to regulate learning and memory.

“People think of insulin and diabetes, but many metabolic syndromes are associated with some types of cognitive defects and behavioral disorders, like depression or dementia,” said Yun Zhang, whose new research demonstrates how the signaling pathway of insulin and insulinlike peptides plays a critical role in helping to regulate learning and memory.
Credit: Rose Lincoln/Harvard Staff Photographer

Though it's most often associated with disorders like diabetes, Harvard researchers have shown how the signaling pathway of insulin and insulin-like peptides plays another critical role in the body -- helping to regulate learning and memory.

Related Articles


In addition to showing that the insulin-like peptides play a critical role in regulating the activity of neurons involved in learning and memory, a team of researchers led by Yun Zhang, Associate Professor of Organismic and Evolutionary Biology, show that the interaction between the molecules can fine-tune how, or even if, learning takes place. Their work is described in a February 6 paper in Neuron.

"People think of insulin and diabetes, but many metabolic syndromes are associated with some types of cognitive defects and behavioral disorders, like depression or dementia," Zhang said. "That suggests that insulin and insulin-like peptides may play an important role in neural function, but it's been very difficult to nail down the underlying mechanism, because these peptides do not have to function through synapses that connect different neurons in the brain"

To get at that mechanism, Zhang and colleagues turned to an organism whose genome and nervous system are well described and highly accessible by genetics -- C. elegans.

Using genetic tools, researchers altered the small, transparent worms by removing their ability to create individual insulin-like compounds. These new "mutant" worms were then tested to see whether they would learn to avoid eating a particular type of bacteria that is known to infect the worms. Tests showed that while some worms did learn to steer clear of the bacteria, others didn't -- suggesting that removing a specific insulin-like compound halted the worms' ability to learn.

Researchers were surprised to find, however, that it wasn't just removing the molecules that could make the animals lose the ability to learn -- some peptide was found to inhibit learning.

"We hadn't predicted that we would find both positive and negative regulators from these peptides," Zhang said. "Why does the animal need this bidirectional regulation of learning? One possibility is that learning depends on context. There are certain things you want to learn -- for example, the worms in these experiments wanted to learn that they shouldn't eat this type of infectious bacteria. That's a positive regulation of the learning. But if they needed to eat, even if it is a bad food, to survive, they would need a way to suppress this type of learning."

Even more surprising for Zhang and her colleagues was evidence that the various insulin-like molecules could regulate each other.

"Many animals, including the humans, have multiple insulin-like molecules and it appears that these molecules can act like a network," she said. "Each of them may play a slightly different role in the nervous system, and they function together to coordinate the signaling related to learning and memory. By changing the way the molecules interact, the brain can fine tune learning in a host of different ways."

Going forward, Zhang said she hopes to characterize more of the insulin-like peptides as a way of better understanding how the various molecules interact, and how they act on the neural circuits for learning and memory.

Understanding how such pathways work could one day help in the development of treatment for a host of cognitive disorders, including dementia.

"The signaling pathways for insulin and insulin-like peptides are highly conserved in mammals, including the humans," Zhang said. "There is even some preliminary evidence that insulin treatment, in some cases, can improve cognitive function. That's one reason we believe that if we understand this mechanism, it will help us better understand how insulin pathways are working in the human brain."


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhunan Chen, Michael Hendricks, Astrid Cornils, Wolfgang Maier, Joy Alcedo, Yun Zhang. Two Insulin-like Peptides Antagonistically Regulate Aversive Olfactory Learning in C.elegans. Neuron, 2013; 77 (3): 572 DOI: 10.1016/j.neuron.2012.11.025

Cite This Page:

Harvard University. "Linking insulin to learning: Insulin-like molecules play critical role in learning and memory." ScienceDaily. ScienceDaily, 26 February 2013. <www.sciencedaily.com/releases/2013/02/130226162837.htm>.
Harvard University. (2013, February 26). Linking insulin to learning: Insulin-like molecules play critical role in learning and memory. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/02/130226162837.htm
Harvard University. "Linking insulin to learning: Insulin-like molecules play critical role in learning and memory." ScienceDaily. www.sciencedaily.com/releases/2013/02/130226162837.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins