Featured Research

from universities, journals, and other organizations

New model could lead to improved treatment for early stage Alzheimer's

Date:
February 28, 2013
Source:
University of Florida
Summary:
Researchers have developed a line of genetically altered mice that model the earliest stages of Alzheimer's disease. This model may help scientists identify new therapies to provide relief to patients who are beginning to experience symptoms.

Researchers at the University of Florida and The Johns Hopkins University have developed a line of genetically altered mice that model the earliest stages of Alzheimer's disease. This model may help scientists identify new therapies to provide relief to patients who are beginning to experience symptoms.

The researchers report their findings in the current issue of The Journal of Neuroscience.

"The development of this model could help scientists identify new ways to enhance brain function in patients in the early stages of the disease," said David Borchelt, UF professor of neuroscience in the Evelyn F. and William L. McKnight Brain Institute and director of the SantaFe HealthCare Alzheimer's Disease Research Center. "Such therapies could preserve brain function longer and delay the appearance of more severe symptoms that leave patients unable to care for themselves."

In the early stages of Alzheimer's disease, people struggle with and fail to learn new games, rules or technologies because their cognitive flexibility decreases. The degenerative disease continues with memory loss and the decline of other brain functions.

The researchers worked with mice that had specially designed gene fragments derived from bacteria and from humans that allowed the investigators to control the production of a small peptide. The peptide, called amyloid beta peptide, is a short chain of amino acids. Accumulations of this particular peptide in the brain as lesions called plaques occur early in the progression of Alzheimer's disease and seem to trigger the early memory problems.

The team regulated the expression of the peptide using antibiotics -- when the animals stopped taking the antibiotic, the peptide-producing gene turned on and caused the mice to develop the plaques found in Alzheimer's patients. After the mice had developed the Alzheimer pathology, the researchers turned the gene back off and observed that the mice showed persistent memory problems that resemble the early stages of the disease.

"This model may be useful to researchers to test drugs that could help with symptoms of early stage Alzheimer's disease," Borchelt said.This research is funded by the National Institute of Neurological Disease and Stroke of the National Institutes of Health, and the SantaFe HealthCare Alzheimer's Disease Research Center of the University of Florida.


Story Source:

The above story is based on materials provided by University of Florida. The original article was written by Melissa Blouin. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Melnikova, S. Fromholt, H. Kim, D. Lee, G. Xu, A. Price, B. D. Moore, T. E. Golde, K. M. Felsenstein, A. Savonenko, D. R. Borchelt. Reversible Pathologic and Cognitive Phenotypes in an Inducible Model of Alzheimer-Amyloidosis. Journal of Neuroscience, 2013; 33 (9): 3765 DOI: 10.1523/JNEUROSCI.4251-12.2013

Cite This Page:

University of Florida. "New model could lead to improved treatment for early stage Alzheimer's." ScienceDaily. ScienceDaily, 28 February 2013. <www.sciencedaily.com/releases/2013/02/130228171502.htm>.
University of Florida. (2013, February 28). New model could lead to improved treatment for early stage Alzheimer's. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2013/02/130228171502.htm
University of Florida. "New model could lead to improved treatment for early stage Alzheimer's." ScienceDaily. www.sciencedaily.com/releases/2013/02/130228171502.htm (accessed August 29, 2014).

Share This




More Mind & Brain News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins