Featured Research

from universities, journals, and other organizations

New gene variant may explain psychotic features in bipolar disorder

Date:
March 5, 2013
Source:
Karolinska Institutet
Summary:
Researchers have found an explanation for why the level of kynurenic acid (KYNA) is higher in the brains of people with schizophrenia or bipolar disease with psychosis. The study identifies a gene variant associated with an increased production of KYNA.

Researchers at Karolinska Institutet have found an explanation for why the level of kynurenic acid (KYNA) is higher in the brains of people with schizophrenia or bipolar disease with psychosis. The study, which is published in the scientific periodical Molecular Psychiatry, identifies a gene variant associated with an increased production of KYNA.

The discovery contributes to the further understanding of the link between inflammation and psychosis, and might pave the way for improved therapies. Kynurenic acid (KYNA) is a substance that affects several signalling pathways in the brain and that is integral to cognitive function. Earlier studies of cerebrospinal fluid have shown that levels of KYNA are elevated in the brains of patients with schizophrenia or bipolar diseases with psychotic features. The reason for this has, however, not been fully understood.

KMO is an enzyme involved in the production of KYNA, and the Karolinska Institutet team has now shown that some individuals have a particular genetic variant of KMO that affects its quantity, resulting in higher levels of KYNA. The study also shows that patients with bipolar disease who carry this gene variant had almost twice the chance of developing psychotic episodes.

KYNA is produced in inflammation, such as when the body is exposed to stress and infection. It is also known that stress and infection may trigger psychotic episodes. The present study provides a likely description of this process, which is more likely to occur in those individuals with the gene variant related to higher production of KYNA. The researchers also believe that the discovery can help explain certain features of schizophrenia or development of other psychotic conditions.

"Psychosis related to bipolar disease has a very high degree of heredity, up to 80 per cent, but we don't know which genes and which mechanisms are involved," says Martin Schalling, Professor of medical genetics at Karolinska Institutet's Department of Molecular Medicine and Surgery, also affiliated to the Center for Molecular Medicine (CMM). "This is where our study comes in, with a new explanation that can be linked to signal systems activated by inflammation. This has consequences for diagnostics, and paves the way for new therapies, since there is a large arsenal of already approved drugs that modulate inflammation."

The study was financed with grants from Karolinska Institutet, the Swedish Research Council, the Söderström-Königska Foundation, the Royal Physiographic Society, the Fredrik and Ingrid Thuring Foundation, the Åhlén Foundation, the Department of Clinical Psychiatry at Huddinge University Hospital, the William Lion Penzner Foundation, and the US government.


Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Journal Reference:

  1. C Lavebratt, S Olsson, L Backlund, L Frisén, C Sellgren, L Priebe, P Nikamo, L Träskman-Bendz, S Cichon, M P Vawter, U Ösby, G Engberg, M Landén, S Erhardt, M Schalling. The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression. Molecular Psychiatry, 2013; DOI: 10.1038/mp.2013.11

Cite This Page:

Karolinska Institutet. "New gene variant may explain psychotic features in bipolar disorder." ScienceDaily. ScienceDaily, 5 March 2013. <www.sciencedaily.com/releases/2013/03/130305080741.htm>.
Karolinska Institutet. (2013, March 5). New gene variant may explain psychotic features in bipolar disorder. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2013/03/130305080741.htm
Karolinska Institutet. "New gene variant may explain psychotic features in bipolar disorder." ScienceDaily. www.sciencedaily.com/releases/2013/03/130305080741.htm (accessed April 25, 2014).

Share This



More Mind & Brain News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) — A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) — A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) — NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
Do We Get Nicer With Age?

Do We Get Nicer With Age?

Newsy (Apr. 22, 2014) — A recent report claims personality can change over time as we age, and usually that means becoming nicer and more emotionally stable. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins