Featured Research

from universities, journals, and other organizations

Mutated gene causes nerve cell death

Date:
March 10, 2013
Source:
Institute of Molecular Biotechnology
Summary:
The British astrophysicist Stephen Hawking is likely to be the world's most famous person living with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. ALS is a progressive disease affecting motor neurons, nerve cells that control muscle function, and nearly always leads to death. Researchers have now identified a completely new mechanism in the onset of motor neuron diseases. Their findings could be the basis for future treatments for these presently incurable diseases.

Neuromuscular junctions.
Credit: Image courtesy of Institute of Molecular Biotechnology

The British astrophysicist Stephen Hawking is likely to be the world's most famous person living with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. ALS is a progressive disease affecting motor neurons, nerve cells that control muscle function, and nearly always leads to death. Researchers at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) in Vienna have now identified a completely new mechanism in the onset of motor neuron diseases. Their findings could be the basis for future treatments for these presently incurable diseases.

A new principle on motor neuron death

The IMBA scientists, working with an international team of researchers under the leadership of Josef Penninger and Javier Martinez, discovered a completely new fundamental mechanism that triggers the death of motor neurons. Motor neurons are nerve cells responsible for stimulating muscles. The loss of these motor neurons in mice with a genetic mutation in a gene named CLP11 leads to severe and progressive muscular paralysis and, in some cases, to death.

"We've been working on resolving the function of the CLP1 gene in a living organism for a long time. To do that, we developed model mice in which the function of CLP1 was genetically inactivated. To our utter surprise we discovered that deactivating CLP1 increases the sensitivity of cell die when exposed to oxidative stress2. That leads to enhanced activity of the p53 protein3 and then to the permanent destruction of motor neurons," says Toshikatsu Hanada, a postdoctoral researcher working in the lab of Josef Penninger and first author of the study along with Stefan Weitzer.

Stephen Hawking -- a most renowned patient

Motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are chronic disorders of the neuromuscular system. These diseases are caused by damage in the motor nerve cells in the brain and spinal cord, and the nerves can no longer stimulate motion in the muscles. The primary symptoms are muscular weakness, muscular dystrophy, and problems swallowing or speaking. Stephen Hawking was diagnosed with ALS 50 years ago. But not all ALS patients live so long with the disease: so far there are no treatments for ALS. Nearly all ALS patients die of paralysis of respiratory muscles within a few years.

Completely new disease mechanism

Javier Martinez, an IMBA team leader and co-author of the study, is a specialist in the field of ribonucleic acid (RNA) research. His research group had discovered the CLP1 gene in an earlier study, published in Nature in 2007. Until now, the exact essential function of CLP1 in RNA biology was unclear. "By deactivating CLP1, we have discovered a previously unknown new species of RNA," says Javier Martinez about the scientific relevance of the work. "The accumulation of this RNA is a consequence of increased oxidative stress in the cell. We see this as one of the triggers for the loss of motor neurons that occurs in ALS and other neuromuscular diseases. Thus our findings describe a completely new mechanism of motor neuron diseases."

Seminal findings

Josef Penninger, scientific director at the IMBA and last-author of the study, is excited about the researchers' findings: "This surprising discovery of a role of CLP1 in the onset of motor neuron diseases is an entirely new principle in how RNA talks to oxidative stress. Nearly all genetic mutations found in ALS patients affect either RNA metabolism or oxidative stress, suggesting a possibly unifying principle for these diseases. Our work may have revealed the 'missing link' in how these two biological systems communicate and trigger incurable diseases like ALS."

Stefan Weitzer sees tremendous potential for these findings: "We've discovered a new mechanism that leads to the death of motor neurons. If this holds true for other neuronal disease, our results could be one day used to drive the development of treatments for previously incurable diseases. In our work we also describe how the p53 protein regulates the loss of motor neurons. Removing p53 saves mice with CLP1 mutations from certain death." If scientists are successful in applying these findings to people, the researchers may have discovered a treatment approach to cure ALS and similar diseases. The authors, however, caution that more studies will be needed to translate their findings to human medicine.

This study was performed in collaboration with research groups from the Medical Universities of Vienna and Innsbruck, the University Medical Center at Hamburg-Eppendorf in Germany, the Harvard Medical School, the Harvard Stem Cell Institute, the Boston Children's and Massachusetts General Hospitals, the Keio University School of Medicine in Tokyo, Oita University in Japan, and the Weizmann Institute of Science in Rehovot in Israel.

Notes:

1) CLP1: = Cleavage and Polyadenylation Factor 1: a kinase (enzyme responsible for transmitting signals in cells) responsible for attaching phosphate residue to RNA.

2) Oxidative stress: causes damage to cells and the genome, and is involved in the ageing process. The normal repair and detoxification function of the cells is overburdened.

3) p53: a protein that is mutated in many types of cancer cells. It plays a role in inhibiting the cell cycle and can trigger cell death.


Story Source:

The above story is based on materials provided by Institute of Molecular Biotechnology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Toshikatsu Hanada, Stefan Weitzer, Barbara Mair, Christian Bernreuther, Brian J. Wainger, Justin Ichida, Reiko Hanada, Michael Orthofer, Shane J. Cronin, Vukoslav Komnenovic, Adi Minis, Fuminori Sato, Hiromitsu Mimata, Akihiko Yoshimura, Ido Tamir, Johannes Rainer, Reinhard Kofler, Avraham Yaron, Kevin C. Eggan, Clifford J. Woolf, Markus Glatzel, Ruth Herbst, Javier Martinez, Josef M. Penninger. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature, 2013; DOI: 10.1038/nature11923

Cite This Page:

Institute of Molecular Biotechnology. "Mutated gene causes nerve cell death." ScienceDaily. ScienceDaily, 10 March 2013. <www.sciencedaily.com/releases/2013/03/130310163827.htm>.
Institute of Molecular Biotechnology. (2013, March 10). Mutated gene causes nerve cell death. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/03/130310163827.htm
Institute of Molecular Biotechnology. "Mutated gene causes nerve cell death." ScienceDaily. www.sciencedaily.com/releases/2013/03/130310163827.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com
The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins