Featured Research

from universities, journals, and other organizations

Neuroscience of finding your lost keys

Date:
March 21, 2013
Source:
Salk Institute for Biological Studies
Summary:
Ever find yourself racking your brain on a Monday morning to remember where you put your car keys? When you do find those keys, you can thank the hippocampus, a brain region responsible for storing and retrieving memories of different environments -- such as that room where your keys were hiding in an unusual spot. Now, scientists have helped explain how the brain keeps track of the incredibly rich and complex environments people navigate on a daily basis.

Salk researchers discovered how the brain keeps track of similar but distinct memories. This microscope image shows neural activity in the dentate gyrus, a subsection of the hippocampus where distinct groups of cells were active during the learning episodes (green) and memory retrieval (red).
Credit: Courtesy of Wei Deng, Salk Institute for Biological Studies

Ever find yourself racking your brain on a Monday morning to remember where you put your car keys? When you do find those keys, you can thank the hippocampus, a brain region responsible for storing and retrieving memories of different environments-such as that room where your keys were hiding in an unusual spot.

Now, scientists at the Salk Institute for Biological Studies have helped explain how the brain keeps track of the incredibly rich and complex environments people navigate on a daily basis. They discovered how the dentate gyrus, a subregion of the hippocampus, helps keep memories of similar events and environments separate, a finding they reported March 20 in eLife. The findings, which clarify how the brain stores and distinguishes between memories, may also help identify how neurodegenerative diseases, such as Alzheimer's disease, rob people of these abilities.

"Everyday, we have to remember subtle differences between how things are today, versus how they were yesterday -- from where we parked our car to where we left our cellphone," says Fred H. Gage, senior author on the paper and the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Disease at Salk. "We found how the brain makes these distinctions, by storing separate 'recordings' of each environment in the dentate gyrus."

The process of taking complex memories and converting them into representations that are less easily confused is known as pattern separation. Computational models of brain function suggest that the dentate gyrus helps us perform pattern separation of memories by activating different groups of neurons when an animal is in different environments.

However, previous laboratory studies found that in fact the same populations of neurons in the dentate gyrus are active in different environments, and that the way the cells distinguished new surroundings was by changing the rate at which they sent electrical impulses. This discrepancy between theoretical predictions and laboratory findings has perplexed neuroscientists and obscured our understanding of memory formation and retrieval.

To explore this mystery more deeply, the Salk scientists compared the functioning of the mouse dentate gyrus and another region of the hippocampus, known as CA1, using laboratory techniques for tracking the activity of neurons at multiple time points.

First, the researchers took mice from their original chamber and placed them in a novel chamber to learn about a new environment (episode 1). Meanwhile, they recorded which hippocampal neurons were active as the animals responded to their new surroundings. Subsequently, the mice were either returned to that same novel chamber to measure memory recall or to a slightly modified chamber to measure discrimination (episode 2). The active neurons in episode 2 were also labeled in order to determine if the neurons activated in episode 1 were used in the same way for recall and for discrimination of small differences between environments.

When the researchers compared the neural activity during the two episodes, they found that the dentate gyrus and CA1 sub-regions functioned differently. In CA1, the same neurons that were active during the initial learning episode were also active when the mice retrieved the memories. In the dentate gyrus, however, distinct groups of cells were active during the learning episodes and retrieval. Also, exposing the mice to two subtly different environments activated two distinct groups of cells in the dentate gyrus.

"This finding supported the predictions of theoretical models that different groups of cells are activated during exposure to similar, but distinct, environments," says Wei Deng, a Salk postdoctoral research and first author on the paper. "This contrasts with the findings of previous laboratory studies, possibly because they looked at different sub-populations of neurons in the dentate gyrus."

The Salk researchers' findings suggest that recalling a memory-such as the location of missing keys-does not always involve reactivation of the same neurons that were active during encoding. More importantly, the results indicate that the dentate gyrus performs pattern separation by using distinct populations of cells to represent similar but non-identical memories.

The findings help clarify the mechanisms that underpin memory formation and shed light on systems that are disrupted by injuries and diseases of the nervous system.


Story Source:

The above story is based on materials provided by Salk Institute for Biological Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Deng, Mark Mayford, Fred H Gage. Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife, 2013; 2 DOI: 10.7554/eLife.00312

Cite This Page:

Salk Institute for Biological Studies. "Neuroscience of finding your lost keys." ScienceDaily. ScienceDaily, 21 March 2013. <www.sciencedaily.com/releases/2013/03/130321092842.htm>.
Salk Institute for Biological Studies. (2013, March 21). Neuroscience of finding your lost keys. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/03/130321092842.htm
Salk Institute for Biological Studies. "Neuroscience of finding your lost keys." ScienceDaily. www.sciencedaily.com/releases/2013/03/130321092842.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins