Featured Research

from universities, journals, and other organizations

New mechanism for long-term memory formation discovered

Date:
March 25, 2013
Source:
University of California - Irvine
Summary:
Neurobiologists have found a novel molecular mechanism that helps trigger the formation of long-term memory. The researchers believe the discovery of this mechanism adds another piece to the puzzle in the ongoing effort to uncover the mysteries of memory and, potentially, certain intellectual disabilities.

UC Irvine neurobiologists have found a novel molecular mechanism that helps trigger the formation of long-term memory. The researchers believe the discovery of this mechanism adds another piece to the puzzle in the ongoing effort to uncover the mysteries of memory and, potentially, certain intellectual disabilities.

In a study led by Marcelo Wood of UC Irvine's Center for the Neurobiology of Learning & Memory, the team investigated the role of this mechanism -- a gene designated Baf53b -- in long-term memory formation. Baf53b is one of several proteins making up a molecular complex called nBAF.

Mutations in the proteins of the nBAF complex have been linked to several intellectual disorders, including Coffin-Siris syndrome, Nicolaides-Baraitser syndrome and sporadic autism. One of the key questions the researchers addressed is how mutations in components of the nBAF complex lead to cognitive impairments.

In their study, Wood and his colleagues used mice bred with mutations in Baf53b. While this genetic modification did not affect the mice's ability to learn, it did notably inhibit long-term memories from forming and severely impaired synaptic function.

"These findings present a whole new way to look at how long-term memories form," said Wood, associate professor of neurobiology & behavior. "They also provide a mechanism by which mutations in the proteins of the nBAF complex may underlie the development of intellectual disability disorders characterized by significant cognitive impairments."

How does this mechanism regulate gene expression required for long-term memory formation? Most genes are tightly packaged by a chromatin structure -- chromatin being what compacts DNA so that it fits inside the nucleus of a cell. That compaction mechanism represses gene expression. Baf53b, and the nBAF complex, physically open the chromatin structure so specific genes required for long-term memory formation are turned on. The mutated forms of Baf53b did not allow for this necessary gene expression.

"The results from this study reveal a powerful new mechanism that increases our understanding of how genes are regulated for memory formation," Wood said. "Our next step is to identify the key genes the nBAF complex regulates. With that information, we can begin to understand what can go wrong in intellectual disability disorders, which paves a path toward possible therapeutics."

Findings appear online today in Nature Neuroscience.

Annie Vogel-Ciernia, Dina Matheos, Eniko Kramar, Soraya Azzawi, Yuncai Chen, Christophe Magnan, Michael Zeller, Angelina Sylvain, Jakob Haettig, Yousheng Jia, Anthony Tran, Richard Dang, Rebecca Post, Meredith Chabrier, Alex Babayan, Pierre Baldi, Dr. Tallie Z. Baram and Gary Lynch of UC Irvine; Ruth Barrett of Oregon Health & Science University; and Jiang Wu and Gerald Crabtree of Stanford University contributed to the study.

Grants from the National Institutes of Health (MH081004, DA025922, T32-AG00096-29, P01 NS045260, NS 28912, LM010235 and MH73136), the Office of Naval Research (N00014-10-1-0072), the National Science Foundation (IIS-0513376) and the National Library of Medicine (T15 LM07443) supported the research.


Story Source:

The above story is based on materials provided by University of California - Irvine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Annie Vogel-Ciernia, Dina P Matheos, Ruth M Barrett, Enikφ A Kramαr, Soraya Azzawi, Yuncai Chen, Christophe N Magnan, Michael Zeller, Angelina Sylvain, Jakob Haettig, Yousheng Jia, Anthony Tran, Richard Dang, Rebecca J Post, Meredith Chabrier, Alex H Babayan, Jiang I Wu, Gerald R Crabtree, Pierre Baldi, Tallie Z Baram, Gary Lynch, Marcelo A Wood. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nature Neuroscience, 2013; DOI: 10.1038/nn.3359

Cite This Page:

University of California - Irvine. "New mechanism for long-term memory formation discovered." ScienceDaily. ScienceDaily, 25 March 2013. <www.sciencedaily.com/releases/2013/03/130325135357.htm>.
University of California - Irvine. (2013, March 25). New mechanism for long-term memory formation discovered. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/03/130325135357.htm
University of California - Irvine. "New mechanism for long-term memory formation discovered." ScienceDaily. www.sciencedaily.com/releases/2013/03/130325135357.htm (accessed September 22, 2014).

Share This



More Mind & Brain News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Food Addiction Might Be Caused By PTSD

Food Addiction Might Be Caused By PTSD

Newsy (Sep. 18, 2014) — New research shows that women who suffer from PTSD are three times more likely to develop a food addiction. Video provided by Newsy
Powered by NewsLook.com
Corporal Punishment on Decline, Debate Renews

Corporal Punishment on Decline, Debate Renews

AP (Sep. 16, 2014) — Corporal punishment in the United States is on the decline, but there is renewed debate over its use after Minnesota Vikings running back Adrian Peterson was charged with child abuse. (Sept. 16) Video provided by AP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) — The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins