Featured Research

from universities, journals, and other organizations

Ancient climate questions could improve today's climate predictions

Date:
April 3, 2013
Source:
San Francisco State University
Summary:
Climate models for the early Pliocene might be missing key processes. If researchers can uncover these missing processes, they can apply them to models of modern climate and improve future climate predictions.

About 4 to 5 million years ago, the Earth was warmer than today. Now that greenhouse gas pollution has the planet's temperature rising again, researchers want to know more about why this early Pliocene period was so warm, with the hopes of improving future climate predictions.

A new study in the journal Nature concludes that it is difficult to model the exact conditions behind the pattern of warming in the early Pliocene. None of the proposed mechanisms -- from high carbon dioxide levels to changes in global ocean circulation patterns -- can explain why the ancient warm period looks the way it does.

The findings raise the question of whether climate models for the early Pliocene might be missing key processes. If researchers can uncover these missing processes, they can apply them to models of modern climate and improve future climate predictions, says San Francisco State University Assistant Professor of Geosciences Petra Dekens, a co-author on the Nature study.

"It's very hard to look at a climate record from the past and say this directly applies to modern climate," Dekens says. "But what it does do is help us think about what the gaps might be in our models, what are the uncertainties in our current models, and whether those uncertainties could be important."

While the early Pliocene has attracted the interest of researchers looking to understand today's warming climate, the planet was a markedly different place 4 to 5 million years ago. In particular, while the highest sea surface temperatures were relatively stable, there were only small differences in sea surface temperature moving from the equator to the poles, or moving east to west.

Things began to change after the early Pliocene. The pool of warm water spreading out from the equator began to shrink toward lower latitudes, and east-west differences in sea surface temperature began to develop. Overall, the planet's climate shifted toward cooler temperatures.

The Nature authors were able to see this broad shift in climate by examining a wealth of already-published data on sea surface temperatures. "Very few of these records existed 10 years ago, but we're now at this point where we have records in high latitudes and low latitudes," Dekens said.

Ancient sea surface temperatures can be reconstructed in a variety of ways. Dekens studies sea surface temperatures by looking at the ratio of minerals like magnesium and calcium in the shells of tiny single-celled sea animals, found in sediment cores drawn from the deep sea. These ratios reflect sea temperature at the time the shells were deposited.

The records allowed the researchers to see that the early Pliocene climate was "structurally different" from today's climate, Dekens said. "It's not just that the absolute temperature in any one location is different, it's that the patterns are different."

Dekens' colleagues constructed several models to try and recreate the sea surface temperature conditions of the early Pliocene, but none of the expected "drivers" of climate that they tested could account for all the major features of the ancient climate.

For instance, the researchers found that increases in greenhouse gases and changes in ocean circulation could not reproduce the early Pliocene climate in their models.

Other tweaks to the models--reducing the reflection of sunlight by tropical clouds, for instance -- did bring the models closer to matching the early Pliocene. But they still fell short of explaining the full pattern.


Story Source:

The above story is based on materials provided by San Francisco State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. V. Fedorov, C. M. Brierley, K. T. Lawrence, Z. Liu, P. S. Dekens, A. C. Ravelo. Patterns and mechanisms of early Pliocene warmth. Nature, 2013; 496 (7443): 43 DOI: 10.1038/nature12003

Cite This Page:

San Francisco State University. "Ancient climate questions could improve today's climate predictions." ScienceDaily. ScienceDaily, 3 April 2013. <www.sciencedaily.com/releases/2013/04/130403131350.htm>.
San Francisco State University. (2013, April 3). Ancient climate questions could improve today's climate predictions. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/04/130403131350.htm
San Francisco State University. "Ancient climate questions could improve today's climate predictions." ScienceDaily. www.sciencedaily.com/releases/2013/04/130403131350.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
New Pictures of Ship That Sank in 1888

New Pictures of Ship That Sank in 1888

AP (Apr. 24, 2014) Federal researchers have released new images of the City of Chester, a steamship that sank in San Francisco Bay in 1888. Researchers recently found the shipwreck while mapping shipping routes. (April 24) Video provided by AP
Powered by NewsLook.com
Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Ancient Pool of Warm Water Questions Current Climate Models

Apr. 3, 2013 A huge pool of warm water that stretched out from Indonesia over to Africa and South America four million years ago suggests climate models might be too conservative in forecasting tropical changes. ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins