Featured Research

from universities, journals, and other organizations

Ocean's future not so bleak? Resilience found in shelled plants exposed to ocean acidification

Date:
April 15, 2013
Source:
University of California - Santa Barbara
Summary:
Marine scientists have long understood the detrimental effect of fossil fuel emissions on marine ecosystems. But a group has found a point of resilience in a microscopic shelled plant with a massive environmental impact, which suggests the future of ocean life may not be so bleak.

This shows cells of the coccolithophore species Emiliania huxleyi strain NZEH under present-day, left, and future high, right, carbon dioxide conditions.
Credit: UCSB

Marine scientists have long understood the detrimental effect of fossil fuel emissions on marine ecosystems. But a group led by a UC Santa Barbara professor has found a point of resilience in a microscopic shelled plant with a massive environmental impact, which suggests the future of ocean life may not be so bleak.

As fossil fuel emissions increase, so does the amount of carbon dioxide oceans absorb and dissolve, lowering their pH levels. "As pH declines, there is this concern that marine species that have shells may start dissolving or may have more difficulty making calcium carbonate, the chalky substance that they use to build shells," said Debora Iglesias-Rodriguez, a professor in UCSB's Department of Ecology, Evolution and Marine Biology.

Iglesias-Rodriguez and postdoctoral researcher Bethan Jones, who is now at Rutgers University, led a large-scale study on the effects of ocean acidification on these tiny plants that can only be seen under the microscope. Their research, funded by the European Project on Ocean Acidification, is published in the journal PLoS ONE and breaks with traditional notions about the vitality of calcifiers, or creatures that make shells, in future ocean conditions.

"The story years ago was that ocean acidification was going to be bad, really bad for calcifiers," said Iglesias-Rodriguez, whose team discovered that one species of the tiny single celled marine coccolithophore, Emiliania huxleyi, actually had bigger shells in high carbon dioxide seawater conditions. While the team acknowledges that calcification tends to decline with acidification, "we now know that there are variable responses in sea corals, in sea urchins, in all shelled organisms that we find in the sea."

These E. huxleyi are a large army of ocean-regulating shell producers that create oxygen as they process carbon by photosynthesis and fortify the ocean food chain. As one of Earth's main vaults for environmentally harmful carbon emissions, their survival affects organisms inside and outside the marine system. However, as increasing levels of atmospheric carbon dioxide causes seawater to slide down the pH scale toward acidic levels, this environment could become less hospitable.

The UCSB study incorporated an approach known as shotgun proteomics to uncover how E. huxleyi's biochemistry could change in future high carbon dioxide conditions, which were set at four times the current levels for the study. This approach casts a wider investigative net that looks at all changes and influences in the environment as opposed to looking at individual processes like photosynthesis.

Shotgun proteomics examines the type, abundance, and alterations in proteins to understand how a cell's machinery is conditioned by ocean acidification. "There is no perfect approach," said Iglesias-Rodriguez. "They all have their caveats, but we think that this is a way of extracting a lot of information from this system."

To mirror natural ocean conditions, the team used over half a ton of seawater to grow the E. huxleyi and bubbled in carbon dioxide to recreate both present day and high future carbon levels. It took more than six months for the team to grow enough plants to accumulate and analyze sufficient proteins.

The team found that E. huxleyi cells exposed to higher carbon dioxide conditions were larger and contained more shell than those grown in current conditions. However, they also found that these larger cells grow slower than those under current carbon dioxide conditions. Aside from slower growth, the higher carbon dioxide levels did not seem to affect the cells even at the biochemical level, as measured by the shotgun proteomic approach.

"The E. huxleyi increased the amount of calcite they had because they kept calcifying but slowed down division rates," said Iglesias-Rodriguez. "You get fewer cells but they look as healthy as those under current ocean conditions, so the shells are not simply dissolving away."

The team stresses that while representatives of this species seem to have biochemical mechanisms to tolerate even very high levels of carbon dioxide, slower growth could become problematic. If other species grow faster, E. huxleyi could be outnumbered in some areas.

"The cells in this experiment seemed to tolerate future ocean conditions," said Jones. "However, what will happen to this species in the future is still an open question. Perhaps the grow-slow outcome may end up being their downfall as other species could simply outgrow and replace them."


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bethan M. Jones, M. Debora Iglesias-Rodriguez, Paul J. Skipp, Richard J. Edwards, Mervyn J. Greaves, Jeremy R. Young, Henry Elderfield, C. David O'Connor. Responses of the Emiliania huxleyi Proteome to Ocean Acidification. PLoS ONE, 2013; 8 (4): e61868 DOI: 10.1371/journal.pone.0061868

Cite This Page:

University of California - Santa Barbara. "Ocean's future not so bleak? Resilience found in shelled plants exposed to ocean acidification." ScienceDaily. ScienceDaily, 15 April 2013. <www.sciencedaily.com/releases/2013/04/130415100903.htm>.
University of California - Santa Barbara. (2013, April 15). Ocean's future not so bleak? Resilience found in shelled plants exposed to ocean acidification. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/04/130415100903.htm
University of California - Santa Barbara. "Ocean's future not so bleak? Resilience found in shelled plants exposed to ocean acidification." ScienceDaily. www.sciencedaily.com/releases/2013/04/130415100903.htm (accessed April 18, 2014).

Share This



More Earth & Climate News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins