Featured Research

from universities, journals, and other organizations

Scientists learn what makes nerve cells so strong

Date:
April 15, 2013
Source:
University of Illinois at Chicago
Summary:
How do nerve cells -- which can each be up to three feet long in humans -- keep from rupturing or falling apart? Axons, the long, cable-like projections on neurons, are made stronger by a unique modification of the common molecular building block of the cell skeleton. The finding may help guide the search for treatments for neurodegenerative diseases.

Illustration of neurons.
Credit: Scott Brady, professor of anatomy and cell biology

How do nerve cells -- which can each be up to three feet long in humans -- keep from rupturing or falling apart?

Related Articles


Axons, the long, cable-like projections on neurons, are made stronger by a unique modification of the common molecular building block of the cell skeleton. The finding, which may help guide the search for treatments for neurodegenerative diseases, was reported in the April 10 issue of Neuron by researchers at the University of Illinois at Chicago College of Medicine.

Microtubules are long, hollow cylinders that are a component of the cytoskeleton in all cells of the body. They also support transport of molecules within the cell and facilitate growth. They are made up of polymers of a building-block substance called tubulin.

"Except for neurons, cells' microtubules are in constant dynamic flux -- being taking apart and rebuilt," says Scott Brady, professor and head of anatomy and cell biology at UIC and principal investigator on the study. But only neurons grow so long, he said, and once created they must endure throughout a person's life, as much as 80 to 100 years. The microtubules of neurons are able to withstand laboratory conditions that cause other cells' microtubules to break apart.

Brady had been able to show some time ago that the neuron's stability depended on a modification of tubulin.

"But when we tried to figure out what the modification was, we didn't have the tools," he said.

Yuyu Song, a former graduate student in Brady's lab and the first author of the study, took up the question. "It was like a detective story with many possibilities that had to be ruled out one by one," she said. Song, who is now a post-doctoral fellow at Howard Hughes Medical Institute at Yale School of Medicine, used a variety of methods to determine the nature of the modification and where it occurs.

She found that tubulin is modified by the chemical bonding of polyamines, positively charged molecules, at sites that might otherwise be chinks where tubulin could be broken down, causing the microtubules to fall apart. She was also able to show that the enzyme transglutaminase was responsible for adding the protective polyamines.

The blocking of a vulnerable site on tubulin would explain the extraordinary stability of neuron microtubules, said Brady. However, convincing others required the "thorough and elegant work" that Song brought to it, he said. "It's such a radical finding that we needed to show all the key steps along the way."

The authors also note that increased microtubule stability correlates with decreased neuronal plasticity -- and both occur in the process of aging and in some neurodegenerative diseases. Continued research, they say, may help identify novel therapeutic approaches to prevent neurodegeneration or allow regeneration.

Laura Kirkpatrick of Lexicon Pharmaceuticals, Alexander Schilling and Donald Helseth of UIC, Jeffery W. Keillor of the University of Ottawa, and Gail Johnson of the University of Rochester Medical Center also contributed to the study.

The study was supported by grants (NS23868 and NS23320) from the National Institute of Neurological Disorders and Stroke.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. The original article was written by Jeanne Galatzer-Levy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuyu Song, Laura L. Kirkpatrick, Alexander B. Schilling, Donald L. Helseth, Nicolas Chabot, Jeffrey W. Keillor, Gail V.w. Johnson, Scott T. Brady. Transglutaminase and Polyamination of Tubulin: Posttranslational Modification for Stabilizing Axonal Microtubules. Neuron, 2013 DOI: 10.1016/j.neuron.2013.01.036

Cite This Page:

University of Illinois at Chicago. "Scientists learn what makes nerve cells so strong." ScienceDaily. ScienceDaily, 15 April 2013. <www.sciencedaily.com/releases/2013/04/130415172021.htm>.
University of Illinois at Chicago. (2013, April 15). Scientists learn what makes nerve cells so strong. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2013/04/130415172021.htm
University of Illinois at Chicago. "Scientists learn what makes nerve cells so strong." ScienceDaily. www.sciencedaily.com/releases/2013/04/130415172021.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins