Featured Research

from universities, journals, and other organizations

Gene networks in brains of deceased patients reveal potential therapy for Alzheimer's disease

Date:
April 25, 2013
Source:
Cell Press
Summary:
Most information about the cause of Alzheimer's is based on studies from animal models. Now, a study examines the brain tissue of deceased human patients and sheds light on dysfunctions in molecular networks in the brain that are at the root of Alzheimer's. By showing that the TYROBP gene plays a key role in disrupting immune system pathways in the brains of Alzheimer's patients, the study reveals a potential therapeutic target for preventing brain damage.

Most information about the cause of Alzheimer's disease is based on studies from animal models. Now, a study published by Cell Press on April 25th in the journal Cell examines the brain tissue of deceased human patients and sheds light on dysfunctions in molecular networks in the brain that are at the root of Alzheimer's disease. By showing that the TYROBP gene plays a key role in disrupting immune system pathways in the brains of Alzheimer's patients, the study reveals a potential therapeutic target for preventing brain damage caused by this debilitating disease.

Related Articles


"Our goal was to find genes that lead the charge and direct many other genes towards Alzheimer's disease," says senior study author Valur Emilsson of the Icelandic Heart Association. "This findings presents a comprehensive network-based framework to test models of disease mechanism and also offer novel insights for drug discovery programs that can affect neurodegenerative diseases."

Alzheimer's disease is an irreversible brain disease that slowly destroys memory and thinking skills. Symptoms usually appear after age 60, and as the population grows older, the incidence of Alzheimer's is expected to increase dramatically. Yet very little is known about the molecular causes of this complex disease, in part because scientists have relied on animal models that do not replicate cognitive deficits and brain damage in humans.

To gain new insights into the molecular underpinnings of Alzheimer's, Emilsson and his team analyzed 1,647 brain tissue samples from deceased individuals who either had Alzheimer's or were healthy. By measuring the activity levels of thousands of genes in these tissues, they determined which molecular networks are disrupted in diseased brains. Their computational analysis revealed the important role of a gene expressed in microglia -- immune cells that clean up debris and destroy pathogens in the brain. They found that this gene -- TYROBP -- is overactive in the diseased brain, and it plays a key causal role in disrupting the activity of many other genes that control microglia activation.

"Our study shows that it makes sense to study disease as it actually occurs in the brains of human patients," Emilsson says. "We anticipate that our approach will enhance the transferability of basic biological discovery into meaningful medical progress."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bin Zhang, Chris Gaiteri, Liviu-Gabriel Bodea, Zhi Wang, Joshua McElwee, Chunsheng Zhang, Linh Tran, Radu Dobrin, Eugene Fluder, Bruce Clurman, Manikandan Narayanan, Cliona Molony, Christine Suver, John R. Lamb, Vilmundur Gudnason, David J. Stone, Eric E. Schadt, Harald Neumann, Jun Zhu & Valur Emilsson. Tracing Multi-System Failure in Alzheimer΄s Disease to Causal Genes. Cell, ( in press) 2013

Cite This Page:

Cell Press. "Gene networks in brains of deceased patients reveal potential therapy for Alzheimer's disease." ScienceDaily. ScienceDaily, 25 April 2013. <www.sciencedaily.com/releases/2013/04/130425132618.htm>.
Cell Press. (2013, April 25). Gene networks in brains of deceased patients reveal potential therapy for Alzheimer's disease. ScienceDaily. Retrieved April 24, 2015 from www.sciencedaily.com/releases/2013/04/130425132618.htm
Cell Press. "Gene networks in brains of deceased patients reveal potential therapy for Alzheimer's disease." ScienceDaily. www.sciencedaily.com/releases/2013/04/130425132618.htm (accessed April 24, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, April 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) — A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) — The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) — Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com
Your Genes Could Influence How Much Mosquitoes Love You

Your Genes Could Influence How Much Mosquitoes Love You

Newsy (Apr. 23, 2015) — New research suggests genetics play a big part in how appetizing you smell to mosquitoes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins