Featured Research

from universities, journals, and other organizations

Novel approach to find RNAs involved in long-term memory storage

Date:
April 25, 2013
Source:
Scripps Research Institute
Summary:
Scientists have developed a novel strategy for isolating and characterizing a substantial number of RNAs transported from the cell-body of neuron (nerve cell) to the synapse, the small gap separating neurons that enables cell to cell communication.

Despite decades of research, relatively little is known about the identity of RNA molecules that are transported as part of the molecular process underpinning learning and memory.

Related Articles


Now, working together, scientists from the Florida campus of The Scripps Research Institute (TSRI), Columbia University and the University of Florida, Gainesville, have developed a novel strategy for isolating and characterizing a substantial number of RNAs transported from the cell-body of neuron (nerve cell) to the synapse, the small gap separating neurons that enables cell to cell communication.

Using this new method, the scientists were able to identify nearly 6,000 transcripts (RNA sequences) from the genome of Aplysia, a sea slug widely used in scientific investigation.

The scientists' target is known as the synaptic transcriptome -- roughly the complete set of RNA molecules transported from the neuronal cell body to the synapse.

In the study, published recently in the journal Proceedings of the National Academy of Sciences, the scientists focused on the RNA transport complexes that interact with the molecular motor kinesin; kinesin proteins move along filaments known as microtubules in the cell and carry various gene products during the early stage of memory storage.

While neurons use active transport mechanisms such as kinesin to deliver RNA cargos to synapses, once they arrive at their synaptic destination that service stops and is taken over by other, more localized mechanisms -- in much the same way that a traveler's bags gets handed off to the hotel doorman once the taxi has dropped them at the entrance.

The scientists identified thousands of these unique sequences of both coding and noncoding RNAs. As it turned out, several of these RNAs play key roles in the maintenance of synaptic function and growth.

The scientists also uncovered several antisense RNAs (paired duplicates that can inhibit gene expression), although what their function at the synapse might be remains unknown.

"Our analyses suggest that the transported RNAs are surprisingly diverse," said Sathya Puthanveettil, a TSRI assistant professor who designed the study. "It also brings up an important question of why so many different RNAs are transported to synapses. One reason may be that they are stored there to be used later to help maintain long-term memories."

The team's new approach offers the advantage of avoiding the dissection of neuronal processes to identify synaptically localized RNAs by focusing on transport complexes instead, Puthanveettil said. This new approach should help in better understanding changes in localized RNAs and their role in local translation as molecular substrates, not only in memory storage, but also in a variety of other physiological conditions, including development.

"New protein synthesis is a prerequisite for maintaining long term memory," he said, "but you don't need this kind of transport forever, so it raises many questions that we want to answer. What molecules need to be synthesized to maintain memory? How long is this collection of RNAs stored? What localized mechanisms come into play for memory maintenance? "

In addition to Puthanveettil, who was the first author of the study, authors of "A Strategy to Capture and Characterize the Synaptic Transcriptome," include Igor Antonov, Sergey Kalchikov, Priyamvada Rajasethupathy, Yun-Beom Choi, Maxime Kinet, Irina Morozova, James J. Russo, and Jingyue Ju of Columbia University; Kevin A. Karl of the Howard Hughes Medical Institute; and Eric R. Kandel of Columbia University, the Howard Hughes Medical Institute and the Kavli Institute for Brain Science; and Andrea B. Kohn, Mathew Citarella, Fahong Yu and Leonid L. Moroz of the University of Florida, Gainesville.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. V. Puthanveettil, I. Antonov, S. Kalachikov, P. Rajasethupathy, Y.-B. Choi, A. B. Kohn, M. Citarella, F. Yu, K. A. Karl, M. Kinet, I. Morozova, J. J. Russo, J. Ju, L. L. Moroz, E. R. Kandel. A strategy to capture and characterize the synaptic transcriptome. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1304422110

Cite This Page:

Scripps Research Institute. "Novel approach to find RNAs involved in long-term memory storage." ScienceDaily. ScienceDaily, 25 April 2013. <www.sciencedaily.com/releases/2013/04/130425160216.htm>.
Scripps Research Institute. (2013, April 25). Novel approach to find RNAs involved in long-term memory storage. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2013/04/130425160216.htm
Scripps Research Institute. "Novel approach to find RNAs involved in long-term memory storage." ScienceDaily. www.sciencedaily.com/releases/2013/04/130425160216.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com
How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins