Featured Research

from universities, journals, and other organizations

Microglia can be derived from patient-specific human induced pluripotent stem cells and may help modulate the course of central nervous system diseases

Date:
April 29, 2013
Source:
American Association of Neurological Surgeons (AANS)
Summary:
Overall importance of microglia in various brain and spinal cord diseases surprises researchers, who find patient-specific stem cells can be turned into microglia, which could be very useful in future treatment options.

Today, during the 81st American Association of Neurological Surgeons (AANS) Annual Scientific Meeting, researchers announced new findings regarding the development of methods to turn human induced pluripotent stem cells (iPSC) into microglia, which could be used for not only research but potentially in treatments for various diseases of the central nervous system (CNS).

Related Articles


Microglia are the resident inflammatory cells of the CNS and can modulate the outcomes of a wide range of disorders including trauma, infections, stroke, brain tumors, and various degenerative, inflammatory and psychiatric diseases. However, the effective therapeutic use of microglia demonstrated in various animal CNS disease models currently cannot be translated to patients due to the lack of methods for procuring high-purity patient-specific microglia. Developing a method for obtaining these cells would be highly valuable.

In the study Differentiation of Induced Pluripotent Stem Cells to Microglia for Treatment of CNS Diseases, mouse and human iPSCs were generated and sequentially co-cultured on various cell monolayers and in the presence of added growth factors. The microglial identity of the resulting cells was confirmed using fluorescence activated cell sorting analyses, functional assays, gene expression analyses and brain engraftment ability. The study results will be shared by presenting author John K. Park, MD, PhD, FAANS,  on Monday, April 29. Co-authors are Michael Shen, BS; Yong Choi, PhD; and Hetal Pandya, PhD.

In the results, researchers found mouse and human iPSCs co-cultured with OP9 cells differentiate into hematopoietic progenitor cells (HPCs). HPCs in turn co-cultured with astrocytes, generate cells that express CD11b, Iba-1 and CX3CR1; secrete the cytokines IL-6, IL-1ί and TNF-a; generate reactive oxygen species; and phagocytose fluorescent particles, all consistent with a microglial phenotype. Gene expression clustering using self-organizing maps indicates that iPSC-derived microglia more closely resemble normal microglia than other inflammatory cell types. The iPSC-derived microglia engraft and migrate to areas of injury within the brain. These finding have led researchers to conclude that iPSC-derived microglia may one day be useful as gene and protein delivery vehicles to the CNS.

"The actual results of our research were not surprising to us, but the overall importance of microglia in a wide variety of brain and spinal cord diseases was surprising. Microglia likely have a role in improving or worsening diseases such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, obsessive compulsive disorder and Rett's syndrome, just to name a few," said John K. Park, MD, PhD, FAANS. "Microglia are the principal immune system cells of the brain and spinal cord, and help fight infections as well as help the healing process after injuries such as trauma and strokes. They also play a poorly understood role in many neurodegenerative and psychiatric diseases. We have developed methods to turn iPSCs into microglia. Because human iPSC can easily be obtained in large numbers, we can now generate large numbers of human microglia not only for use in experiments, but also potentially for use in treatments. The ability to study normal and diseased human microglia will lead to a greater understanding of their roles in healthy brains and various diseases. Diseases that are caused or exacerbated by defective microglia or a paucity of normal microglia may potentially be treated by microglia generated from a patient's iPSC."


Story Source:

The above story is based on materials provided by American Association of Neurological Surgeons (AANS). Note: Materials may be edited for content and length.


Cite This Page:

American Association of Neurological Surgeons (AANS). "Microglia can be derived from patient-specific human induced pluripotent stem cells and may help modulate the course of central nervous system diseases." ScienceDaily. ScienceDaily, 29 April 2013. <www.sciencedaily.com/releases/2013/04/130429175914.htm>.
American Association of Neurological Surgeons (AANS). (2013, April 29). Microglia can be derived from patient-specific human induced pluripotent stem cells and may help modulate the course of central nervous system diseases. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/04/130429175914.htm
American Association of Neurological Surgeons (AANS). "Microglia can be derived from patient-specific human induced pluripotent stem cells and may help modulate the course of central nervous system diseases." ScienceDaily. www.sciencedaily.com/releases/2013/04/130429175914.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins