Featured Research

from universities, journals, and other organizations

Storm study reveals a sting in the tail

Date:
May 1, 2013
Source:
Manchester University
Summary:
Meteorologists have gained a better understanding of how storms like the one that battered Britain in 1987 develop, making them easier to predict.

Meteorologists have gained a better understanding of how storms like the one that battered Britain in 1987 develop, making them easier to predict.
Credit: Image courtesy of Manchester University

Meteorologists have gained a better understanding of how storms like the one that battered Britain in 1987 develop, making them easier to predict.

Related Articles


University of Manchester scientists, working with colleagues in Reading, Leeds and the US, have described how these types of cyclones can strengthen to become violent windstorms.

The Great Storm of 1987, which famously caught out weatherman Michael Fish, left a trail of destruction when winds up to 120mph swept across southern England and northern France, killing 22 people. More recently, gusts of 100mph in January 2012 damaged buildings in Scotland and cut power to tens of thousands of homes.

Such storms are characterised by severe gale-force winds known as sting jets that descend from several kilometres above the surface.

"Sting jets are these regions of strong winds that tend to occur to the south and south-east of the low centre at the end of the tail of the front," explained Professor David Schultz, who led the research in Manchester's School of Earth, Atmospheric and Environmental Sciences.

"These winds are generated from are a descending motion from air that is several kilometres above the surface to the north and north-east of the depression. While the weather front is intensifying, in a region known as frontogenesis ahead of the front, the winds are steadily rising then, in a region known as frontolysis at the tail end of the front, the winds start descending. If the descent is strong enough and other conditions are appropriate, the strong winds can reach the surface in this place called the sting jet."

The researchers, whose findings were published in the journal Weather and Forecasting, took to the skies to fly through a developing storm and measure the strength and direction of the winds.

"The irony is that the winds are strongest in the cyclone where the front is weakening most intensely.

"Our findings are significant because they tell us exactly where we can expect these winds and give forecasters added knowledge about the physical processes that are going on to create this region of strong winds."


Story Source:

The above story is based on materials provided by Manchester University. Note: Materials may be edited for content and length.


Journal Reference:

  1. David M. Schultz, Joseph M. Sienkiewicz. Using Frontogenesis to Identify Sting Jets in Extratropical Cyclones. Weather and Forecasting, 2013; 130321123123000 DOI: 10.1175/WAF-D-12-00126.1

Cite This Page:

Manchester University. "Storm study reveals a sting in the tail." ScienceDaily. ScienceDaily, 1 May 2013. <www.sciencedaily.com/releases/2013/05/130501090653.htm>.
Manchester University. (2013, May 1). Storm study reveals a sting in the tail. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2013/05/130501090653.htm
Manchester University. "Storm study reveals a sting in the tail." ScienceDaily. www.sciencedaily.com/releases/2013/05/130501090653.htm (accessed October 30, 2014).

Share This



More Earth & Climate News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins