Featured Research

from universities, journals, and other organizations

How 'traffic' in our cells works both for and against us

Date:
May 1, 2013
Source:
Hebrew University of Jerusalem
Summary:
A mechanism that permits essential substances to enter our cells while at the same time removing from them harmful components also has a “down side.” This negativeaspect prevents vital drugs, such as anti-cancer drugs, from achieving their designed functions, while also enabling bacterial cells to develop resistance to penetration of antibiotics.

A mechanism that permits essential substances to enter our cells while at the same time removing from them harmful components also has a "down side." This negativeaspect prevents vital drugs, such as anti-cancer drugs, from achieving their designed functions, while also enabling bacterial cells to develop resistance to penetration of antibiotics.

A study aimed at a fuller understanding of how this selective mechanism works -- with a view towards better controlling it through new drug designs -- is the subject of an article by Hebrew University of Jerusalem and German researchers that. has been published in Proceedings of the National Academy of Sciences in the US (PNAS).

The trafficking of materials in and out of cells is controlled by a variety of proteins found in the membrane surrounding living cells, called "transporters." It is these transporters that fulfill the important function of allowing entrance of vital compounds on the one hand and disposal of toxic compounds on the other hand.

While providing an essential survival strategy for the organism, the transporters that remove toxic compounds from the cell have been associated with the ability of the bacterial cell to develop resistance to antibiotics. In mammalian cells, transporters are responsible for some types of resistance of cancer cells to antineoplastic drugs (drugs against abnormal/cancerous growths). Since this resistance poses serious problems in the treatment of cancers and infectious diseases, these proteins are an important target for drug design.

To progress in this pursuit, a more complete knowledge of the transporter mechanism is required, but despite many studies, this mechanism is not yet fully understood. It is, however, well established that an essential part of the mechanism stems from the ability of the transporter to change conformations. Thus, the binding site of a particular transporter is alternatively exposed either to the cell cytoplasm (interior) or to the outside environment, enabling the protein to bind its materials on one side of the cell and transport them to the other side.

The research conducted by the Hebrew University-German team focused at a model transporter expressed in the brain: VMAT (Vesicular MonoAmine Transporter). VMAT is known to transport a variety of neurotransmitters like adrenaline, dopamine and serotonin. In addition, it can also transport MPP, a neurotoxin involved in models of Parkinson's disease.

A functional and structural link between VMAT and bacterial transporters responsible for multidrug resistance may suggest a common origin for both types of proteins. A number of studies demonstrated the significance of VMAT as a target for drug therapy in a variety of pathologic states, such as high blood pressure, hyperkinetic movement disorders and Tourette syndrome.

The research was conducted by Shimon Schuldiner, the Mathilda Marks-Kennedy Professor of Biochemistry at the Hebrew University, and his research students Dana Yaffe and Yonatan Shuster, in cooperation with a group led by Dr Lucy Forrest at the Max Planck institute in Frankfurt, Germany, and her post-doctoral associate Sebastian Radestock.

A computational method was used, allowing the development of a novel model, simulating the protein's 3D structure. The model led to a series of biochemical experiments, which in turn provided a better understanding of the transporter's conformational changes. Specifically, the research identified interactions within the protein that mediate the conformational changes.

The researchers hope that this knowledge may, in the future, help in designing drugs for treating pathologies involving transporters similar to VMAT, including infectious and neurological diseases.


Story Source:

The above story is based on materials provided by Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Yaffe, S. Radestock, Y. Shuster, L. R. Forrest, S. Schuldiner. Identification of molecular hinge points mediating alternating access in the vesicular monoamine transporter VMAT2. Proceedings of the National Academy of Sciences, 2013; 110 (15): E1332 DOI: 10.1073/pnas.1220497110

Cite This Page:

Hebrew University of Jerusalem. "How 'traffic' in our cells works both for and against us." ScienceDaily. ScienceDaily, 1 May 2013. <www.sciencedaily.com/releases/2013/05/130501090700.htm>.
Hebrew University of Jerusalem. (2013, May 1). How 'traffic' in our cells works both for and against us. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/05/130501090700.htm
Hebrew University of Jerusalem. "How 'traffic' in our cells works both for and against us." ScienceDaily. www.sciencedaily.com/releases/2013/05/130501090700.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins