Featured Research

from universities, journals, and other organizations

Epilepsy cured in mice using brain cells

Date:
May 5, 2013
Source:
University of California, San Francisco (UCSF)
Summary:
Epilepsy that does not respond to drugs can be halted in adult mice by transplanting a specific type of cell into the brain, researchers have discovered, raising hope that a similar treatment might work in severe forms of human epilepsy.

EEG of brain waves (stock image).
Credit: © dule964 / Fotolia

Epilepsy that does not respond to drugs can be halted in adult mice by transplanting a specific type of cell into the brain, UC San Francisco researchers have discovered, raising hope that a similar treatment might work in severe forms of human epilepsy.

UCSF scientists controlled seizures in epileptic mice with a one-time transplantation of medial ganglionic eminence (MGE) cells, which inhibit signaling in overactive nerve circuits, into the hippocampus, a brain region associated with seizures, as well as with learning and memory. Other researchers had previously used different cell types in rodent cell transplantation experiments and failed to stop seizures.

Cell therapy has become an active focus of epilepsy research, in part because current medications, even when effective, only control symptoms and not underlying causes of the disease, according to Scott C. Baraban, PhD, who holds the William K. Bowes Jr. Endowed Chair in Neuroscience Research at UCSF and led the new study. In many types of epilepsy, he said, current drugs have no therapeutic value at all.

"Our results are an encouraging step toward using inhibitory neurons for cell transplantation in adults with severe forms of epilepsy," Baraban said. "This procedure offers the possibility of controlling seizures and rescuing cognitive deficits in these patients."

The findings, which are the first ever to report stopping seizures in mouse models of adult human epilepsy, will be published online May 5 in the journal Nature Neuroscience.

During epileptic seizures, extreme muscle contractions and, often, a loss of consciousness can cause seizure sufferers to lose control, fall and sometimes be seriously injured. The unseen malfunction behind these effects is the abnormal firing of many excitatory nerve cells in the brain at the same time.

In the UCSF study, the transplanted inhibitory cells quenched this synchronous, nerve-signaling firestorm, eliminating seizures in half of the treated mice and dramatically reducing the number of spontaneous seizures in the rest. Robert Hunt, PhD, a postdoctoral fellow in the Baraban lab, guided many of the key experiments.

In another encouraging step, UCSF researchers reported May 2 that they found a way to reliably generate human MGE-like cells in the laboratory, and that, when transplanted into healthy mice,the cells similarly spun off functional inhibitory nerve cells. That research can be found online in the journal Cell Stem Cell.

In many forms of epilepsy, loss or malfunction of inhibitory nerve cells within the hippocampus plays a critical role. MGE cells are progenitor cells that form early within the embryo and are capable of generating mature inhibitory nerve cells called interneurons. In the Baraban-led UCSF study, the transplanted MGE cells from mouse embryos migrated and generated interneurons, in effect replacing the cells that fail in epilepsy. The new cells integrated into existing neural circuits in the mice, the researchers found.

"These cells migrate widely and integrate into the adult brain as new inhibitory neurons," Baraban said. "This is the first report in a mouse model of adult epilepsy in which mice that already were having seizures stopped having seizures after treatment."

The mouse model of disease that Baraban's lab team worked with is meant to resemble a severe and typically drug-resistant form of human epilepsy called mesial temporal lobe epilepsy, in which seizures are thought to arise in the hippocampus. In contrast to transplants into the hippocampus, transplants into the amygdala, a brain region involved in memory and emotion, failed to halt seizure activity in this same mouse model, the researcher found.

Temporal lobe epilepsy often develops in adolescence, in some cases long after a seizure episode triggered during early childhood by a high fever. A similar condition in mice can be induced with a chemical exposure, and in addition to seizures, this mouse model shares other pathological features with the human condition, such as loss of cells in the hippocampus, behavioral alterations and impaired problem solving.

In the Nature Neuroscience study, in addition to having fewer seizures, treated mice became less abnormally agitated, less hyperactive, and performed better in water-maze tests.

Additional UCSF study authors include Arturo Alvarez-Buylla, PhD, UCSF professor of neurological surgery; John Rubenstein, MD, PhD, UCSF professor of psychiatry; and Kelly Girskis, staff research associate. The research was funded by the National Institutes of Health and by the California Institute of Regenerative Medicine.


Story Source:

The above story is based on materials provided by University of California, San Francisco (UCSF). Note: Materials may be edited for content and length.


Journal References:

  1. Robert F Hunt, Kelly M Girskis, John L Rubenstein, Arturo Alvarez-Buylla, Scott C Baraban. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nature Neuroscience, 2013; DOI: 10.1038/nn.3392
  2. Cory R. Nicholas, Jiadong Chen, Yunshuo Tang, Derek G. Southwell, Nadine Chalmers, Daniel Vogt, Christine M. Arnold, Ying-Jiun J. Chen, Edouard G. Stanley, Andrew G. Elefanty, Yoshiki Sasai, Arturo Alvarez-Buylla, John L.R. Rubenstein, Arnold R. Kriegstein. Functional Maturation of hPSC-Derived Forebrain Interneurons Requires an Extended Timeline and Mimics Human Neural Development. Cell Stem Cell, 2013; 12 (5): 573 DOI: 10.1016/j.stem.2013.04.005

Cite This Page:

University of California, San Francisco (UCSF). "Epilepsy cured in mice using brain cells." ScienceDaily. ScienceDaily, 5 May 2013. <www.sciencedaily.com/releases/2013/05/130503230317.htm>.
University of California, San Francisco (UCSF). (2013, May 5). Epilepsy cured in mice using brain cells. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/05/130503230317.htm
University of California, San Francisco (UCSF). "Epilepsy cured in mice using brain cells." ScienceDaily. www.sciencedaily.com/releases/2013/05/130503230317.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) — Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) — New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins