Featured Research

from universities, journals, and other organizations

Advance in tuberous sclerosis brain science

Date:
May 9, 2013
Source:
Brown University
Summary:
By manipulating the timing of disease-causing mutations in the brains of developing mice, researchers have found that early genetic deletions in the thalamus may play an important role in course and severity of the developmental disease tuberous sclerosis complex.

Brain disrupted. Neurons from the thalamus of control mice with healthy genes glow green (left), while those whose two Tsc1 alleles were deleted during embryonic development show a strong red glow (right), indicating disruption of the mTOR pathway that regulates growth.
Credit: Zervas Lab/Brown University

By manipulating the timing of disease-causing mutations in the brains of developing mice, Brown University researchers have found that early genetic deletions in the thalamus may play an important role in course and severity of the developmental disease tuberous sclerosis complex.

Doctors often diagnose tuberous sclerosis complex (TSC) based on the abnormal growths the genetic disease causes in organs around the body. Those overt anatomical structures, however, belie the microscopic and mysterious neurological differences behind the disease's troublesome behavioral symptoms: autism, intellectual disabilities, and seizures. In a new study in mice, Brown University researchers highlight a role for a brain region called the thalamus and show that the timing of gene mutation during thalamus development makes a huge difference in the severity of the disease.

TSC can arise in humans and mice alike when both alleles (the one from mom and the one from dad) of the TSC1 gene are deleted. One bad gene is often inherited and the other accumulates a mutation some time during embryonic development. This happens to one in 6,000 people.

"We don't know when during development the mutations are occurring in the patients," said Elizabeth Normand, a Brown neuroscience graduate student and lead author of the paper in the journal Neuron. "That's why we chose to look at the timing. It can give us some insight into the role of genes during embryonic development."

Normand and adviser Mark Zervas, assistant professor of biology, not only wanted to assess the timing but also to probe the role the thalamus might have in contributing to the neurological symptoms of the disease. To do both, their team genetically engineered a clever mouse model in which they could, with a dose of the drug tamoxifen, delete both alleles exclusively in thalamus neurons at the developmental stage of their choosing.

Significant symptoms

Overall, the researchers found they could indeed generate TSC-like behavioral symptoms in the mice, such as seizures, by deleting TSC1 alleles in developing cells of the thalamus. They also found that the timing of the deletion mattered tremendously to the extent of the disease in the brain, the degree of abnormality, and the severity of TSC-like symptoms.

The mice whose alleles were deleted on embryonic day 12 fared much worse behaviorally than the mice whose alleles were deleted on embryonic day 18.

At two months of age, the mice with the embryonic day 12 deletion exhibited excessive self-grooming to the point where they experienced lesions. Among those mice, 10 of 11 experienced seizures at an average rate of more than three per hour.

The mice with the embryonic day 18 deletion, on the other hand, fared better without any over-grooming. By eight months of age, however, four of 17 of the mice did exhibit rare seizures.

These behavioral differences traced to differences in the the way the mice's brains became wired. A comparison of brain tissue from adult mice -- some of which had the early TSC1 deletions and some of which didn't -- revealed differences in the connections between the thalamus and the cortex and in the electrical and physical properties of thalamus cells.

"We're building off the core idea of the thalamus playing an important role in brain function and showing that if you disrupt the way that the thalamic neurons develop that you can get some of these behavioral consequences such as overgrooming or seizures," said Zervas, who is affiliated with the Brown Institute for Brain Science.

The extent of mutant neurons was much more severe in the mice with the embryonic day 12 versus day 18 mutations. In embryonic day 12 deleted mice, for example, the deletion disrupted the growth-regulating "mTOR" pathway in 70 percent of neurons versus only 29 percent of neurons in the embryonic day 18 deleted mice. The disruptions occurred in more areas of the thalamus in embryonic day 12 than in day 18 mice as well. The overactivity of mTOR in TSC is what produces the unusual growths around the body, though these new findings indicate additional roles for the mTOR pathway in brain development and function, Zervas said.

In future work, the team plans to study the effects of deleting the TSC1 allele at other days during development as well as to understand whether there is a threshold of mutant neurons with mTOR disruption at which TSC-like symptoms begin to emerge.

In addition to Normand and Zervas, other authors on the paper are Shane Crandall, Catherine Thorne, Emily Murphy, Bettina Voelcker, Catherine Browning, Jason T. Machan, Christopher Moore, and Barry Connors.

Major support for the paper came from the Department of Defense Congressionally-Directed Medical Research Program (award TS100067 and TS110083). Additional support came from the Brown Institute for Brain Science.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. ElizabethA. Normand, ShaneR. Crandall, CatherineA. Thorn, EmilyM. Murphy, Bettina Voelcker, Catherine Browning, JasonT. Machan, ChristopherI. Moore, BarryW. Connors, Mark Zervas. Temporal and Mosaic Tsc1 Deletion in the Developing Thalamus Disrupts Thalamocortical Circuitry, Neural Function, and Behavior. Neuron, 2013; DOI: 10.1016/j.neuron.2013.03.030

Cite This Page:

Brown University. "Advance in tuberous sclerosis brain science." ScienceDaily. ScienceDaily, 9 May 2013. <www.sciencedaily.com/releases/2013/05/130509123424.htm>.
Brown University. (2013, May 9). Advance in tuberous sclerosis brain science. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/05/130509123424.htm
Brown University. "Advance in tuberous sclerosis brain science." ScienceDaily. www.sciencedaily.com/releases/2013/05/130509123424.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins