Featured Research

from universities, journals, and other organizations

Under-appreciated benefit of oyster restoration highlighted

Date:
May 9, 2013
Source:
Virginia Institute of Marine Science
Summary:
A new study shows that healthy oyster reefs would help to buffer the increasing acidity of coastal waters.

Chesapeake Bay's oyster fishery removed significant amounts of shell, reef framework, and buffering capacity from the Bay.
Credit: Image courtesy of Virginia Institute of Marine Science

Scientists have identified many benefits for restoring oyster reefs to Chesapeake Bay and other coastal ecosystems. Oysters filter and clean the water, provide habitat for their own young and for other species, and sustain both watermen and seafood lovers.

A new study co-authored by Professor Roger Mann of the Virginia Institute of Marine Science adds another item to this list of benefits -- the ability of oyster reefs to buffer the increasing acidity of ocean waters.

The study, "Ecosystem effects of shell aggregations and cycling in coastal waters: An example of Chesapeake Bay oyster reefs," appears in Ecology, the flagship journal of the Ecological Society of America. It is co-authored by George Waldbusser of Oregon State University and Eric Powell of the Haskin Shellfish Research Laboratory at Rutgers University.

Concerns about increasing acidity in Chesapeake Bay and the global ocean stem from human inputs of carbon dioxide to seawater -- either through the burning of fossil fuels or runoff of excess nutrients from land. The latter over-fertilizes marine plants and ultimately leads to increased respiration by plankton-filtering oysters and bacteria. In either case, adding carbon dioxide to water produces carbonic acid, a process that has increased ocean acidity by more than 30% since the start of the Industrial Revolution.

A more acidic ocean concerns marine-life experts, who cite its corrosive effects on the calcium carbonate shells of oysters, clams, and other mollusks, as well as its possible physiological effects on the larvae of fish and other marine creatures. At current rates of increase, ocean acidity is predicted to double by 2100.

The Ecology paper reports on the research team's efforts to calculate past and present shell budgets for Chesapeake Bay, with a goal of estimating how effective healthy oyster reefs might be in moderating ocean acidity, and whether today's depleted reefs can withstand future acidity increases.

"Oyster shells are like slow-dissolving TUMS in the belly of Chesapeake Bay," explains Mann. "As ocean water becomes more acidic, oyster shells begin to dissolve into the water, slowly releasing their calcium carbonate -- an alkaline salt that buffers against acidity. An oyster reef is a reservoir of alkalinity waiting to happen."

The team's calculations suggest that in 1870 -- before people began large-scale harvesting of oyster meat and shells from the Chesapeake -- the amount of oyster shell exposed to Bay waters was more than 100 times greater than today, with an equally enhanced capacity to buffer acidity.

"Our data show that that oyster reefs likely played a key role in the pH budget of pre-harvest Chesapeake Bay," says Mann. "The amount of carbonate in the shells of living oysters at that time was roughly equal to the total amount of carbonate dissolved in the modern Bay. If similar numbers of oysters were alive today, they could take up about half of the carbonate that rivers currently carry into Bay waters."

Many people are familiar with the notion that the cloudy waters of the modern Bay would be clearer if over-harvesting and disease hadn't drastically reduced the oyster population and its capacity to filter particles from the water. Mann says, "Our study suggests a similar loss of ecosystem function, but in terms of buffering acidity rather than improving water clarity. This has significant ecological ramifications, but hasn't really been on anyone's radar screen."

Returning oyster shells to Bay waters -- a practice that began in earnest in the 1960s to restore reefs for food and filtering -- has helped buffer acidity in the Bay, but to nowhere near historical levels. Today, scientists estimate that the Bay loses 100 million bushels of oyster shell each year to harvesting and corrosion in Maryland waters alone, despite the return of 20-30 million bushels of shell through dredging and restaurant recycling.

The study by Mann and his colleagues estimates that oysters now contribute only 4% to buffering of acidity baywide, whereas they were responsible for 70% of all baywide buffering in 1870.

Looking towards the future, the team's concern is that oyster reefs in the modern Bay -- fewer and smaller than their pre-harvest counterparts and featuring smaller oysters -- may be unable to keep pace with the increasing acidity of Bay waters.

"The shells of dead oysters degrade rapidly in estuarine environments," says Mann, "with a half-life of only 3 to 10 years. For a reef to maintain the structure needed to support future generations, oysters must grow fast enough and large enough so that their rate of shell production exceeds that of shell degradation."

The optimal rate of shell addition, says Mann, "occurs with larger, older animals that contribute more shell carbonate per mortality event." But, he adds, "the onset of disease has unfortunately reduced the life span and maximum size of Bay oysters, thus compromising the shell budget."

"What's worrisome about this is that the shell reservoir is getting smaller and smaller," says Mann. "Could we reach a tipping point where increasing acidity so overwhelms the decreased buffering capacity of dead shells that it then begins to significantly affect live oysters, further limiting their ability to add shell to the alkalinity buffer? If so, we could end up with a negative feedback loop and a worst-case scenario."


Story Source:

The above story is based on materials provided by Virginia Institute of Marine Science. The original article was written by David Malmquist. Note: Materials may be edited for content and length.


Journal Reference:

  1. George G. Waldbusser, Eric N. Powell, Roger Mann. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology, 2013; 94 (4): 895 DOI: 10.1890/12-1179.1

Cite This Page:

Virginia Institute of Marine Science. "Under-appreciated benefit of oyster restoration highlighted." ScienceDaily. ScienceDaily, 9 May 2013. <www.sciencedaily.com/releases/2013/05/130509154600.htm>.
Virginia Institute of Marine Science. (2013, May 9). Under-appreciated benefit of oyster restoration highlighted. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/05/130509154600.htm
Virginia Institute of Marine Science. "Under-appreciated benefit of oyster restoration highlighted." ScienceDaily. www.sciencedaily.com/releases/2013/05/130509154600.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins