Featured Research

from universities, journals, and other organizations

Revealing hidden fungal species using DNA: The importance of recognizing cryptic diversity

Date:
May 10, 2013
Source:
Pensoft Publishers
Summary:
In contrast to traditional approaches using morphological characters to delimit species, five new lichen-forming fungal species were described from what was traditionally considered a single species using genetic data exclusively. The new species can be identified using DNA barcoding. This pioneering study marks an alternative approach for discovering species and will promote effective research through correct specimen identification in closely related species groups.

A colorful collage of lichens growing on rock in an arid region of the Southwestern USA. Lichens play a variety of important ecological roles and are often a dominant biological component in extreme environments.
Credit: Dr. Steve Leavitt/CC-BY 3.0

Our ability to assess biological diversity, ecosystem health, ecological interactions, and a wide range of other important processes is largely dependent on accurately recognizing species. However, identifying and describing species is not always a straightforward task. In some cases, a single species may show a high level of morphological variation, while in other cases, multiple morphologically similar species may be hidden under a single species name. Cryptic species, two or more distinct species that are erroneously classified under a single species name, are found in all major groups of living things.

As an alternative to traditional morphology-based species delimitation, an international research group, including scientists from Germany, Iran, Spain, and the USA, describe five new species of lichen-forming fungi from what was traditionally considered a single species using differences in DNA sequence data. The authors state that "the effective use of genetic data appears to be essential to appropriately and practically identify natural groups in some phenotypically cryptic lichen-forming fungal lineages."

The study was published in the open access journal Mycokeys.

They also provide a reference DNA sequence database for specimen identification using DNA barcoding, making specimen identification more accessible and more reliable at the same time. The application of DNA-based identification can potentially be used as a way for both specialists and nonspecialists alike to recognize species that are otherwise difficult to identify.

Lichens are commonly used to monitor ecosystem health and the impact of atmospheric pollution. In addition, some lichens are potentially valuable sources of pharmaceutical products, including antibiotics, antioxidants, etc. In spite of their occurrence in all terrestrial ecosystems and overall ecological importance, lichens are commonly overlooked. DNA barcode identification can be performed in a variety of ecological, pharmaceutical, and biomonitoring studies in order to quickly sort specimens into the correct species.

The authors argue that the use of molecular sequence data in identifying species will likely become increasingly important and routinely applied. Other disciplines such as ecology, conservation, and physiology will benefit from a more objectively based species circumscription, enabling us to interpret distribution and ecological patterns more precisely, while more accurately monitoring environmental disturbance and climate change. The authors predict that this approach will prove to be an important tool in making critical conservation-related decisions.


Story Source:

The above story is based on materials provided by Pensoft Publishers. The original story is licensed under a Creative Commons License. Note: Materials may be edited for content and length.


Journal Reference:

  1. Steven Leavitt, Fernando Fernαndez-Mendoza, Sergio Pιrez-Ortega, Mohammad Sohrabi, Pradeep Divakar, Thorsten Lumbsch, Larry St. Clair. DNA barcode identification of lichen-forming fungal species in the Rhizoplaca melanophthalma species-complex (Lecanorales, Lecanoraceae), including five new species. MycoKeys, 2013; 7 (0): 1 DOI: 10.3897/mycokeys.7.4508

Cite This Page:

Pensoft Publishers. "Revealing hidden fungal species using DNA: The importance of recognizing cryptic diversity." ScienceDaily. ScienceDaily, 10 May 2013. <www.sciencedaily.com/releases/2013/05/130510124550.htm>.
Pensoft Publishers. (2013, May 10). Revealing hidden fungal species using DNA: The importance of recognizing cryptic diversity. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2013/05/130510124550.htm
Pensoft Publishers. "Revealing hidden fungal species using DNA: The importance of recognizing cryptic diversity." ScienceDaily. www.sciencedaily.com/releases/2013/05/130510124550.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) — Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) — Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins