Featured Research

from universities, journals, and other organizations

Malaria infected mosquitoes more attracted to human odor than uninfected mosquitoes

Date:
May 15, 2013
Source:
London School of Hygiene & Tropical Medicine
Summary:
Female mosquitoes infected with malaria parasites are significantly more attracted to human odor than uninfected mosquitoes, according to new research. Scientists will now attempt to find out how malaria parasites manipulate their mosquito hosts.

Scientists will attempt to find out how malaria parasites manipulate their mosquito hosts after discovering that smell could be a major factor.

In a study published in PLOS ONE today, a team of researchers led by the London School of Hygiene & Tropical Medicine show for the first time that female mosquitoes infected with malaria parasites are significantly more attracted to human odour than uninfected mosquitoes.

This was demonstrated in a laboratory setting in which infected female Anopheles gambiae sensu stricto mosquitoes were attracted to human odours three times more than mosquitoes that were not infected with the malaria-causing Plasmodium falciparum parasite. The rate of landing and biting attempts for infected mosquitoes was around three times greater than uninfected mosquitoes.

The pilot study was conducted in collaboration with Wageningen University and Radboud University Nijmegen Medical Centre in the Netherlands.

Dr James Logan's team has been awarded a three-year grant by the Biotechnology and Biological Sciences Research Council (BBSRC) to investigate how being infected with malaria could cause the mosquitoes to behave differently. If the parasites are manipulating the mosquitoes' sense of smell, increasing the chance they will bite when the parasite is transmissible, then the malaria is more likely to spread.

The scientists, who will work collaboratively with Rothamsted Research, Wageningen University and Radboud University, hope their research will enable the identification of the chemical compounds in human odour to which mosquitoes are attracted and to determine whether infected mosquitoes respond differently to those compounds.

This will provide information that could be used to illuminate how malaria -- a disease which causes more than half a million deaths a year -- is spread from human to human by parasite-infected female mosquitoes which bite people to feed on blood they need in order to reproduce.

Significantly, the results could help identify new compounds which could be used to develop improved mosquito traps that could specifically target malaria-infected mosquitoes before they have the chance to pass on the parasite to the people they bite.

Building on the newly-published pilot study, the team will conduct experiments using a windtunnel which measures the behaviour of mosquitoes towards odours and electrodes which track the response of individual odour-detecting cells from within the antenna of the mosquito in specially-designed secure laboratories at the School to measure the responses of malaria-infected Anopheles gambiae s.s. females to human odours. The scientists also aim to determine whether the response depends on what stage in the lifecycle the parasites are in within insect hosts.

Dr Logan, Senior Lecturer in Medical Entomology and Chief Scientific Officer for arctec, at the London School of Hygiene & Tropical Medicine, said: "It has previously been shown that parasites are able to manipulate the behaviour of insects involved in their transmission and reproductive survival. For example, malaria-infected mosquitoes take larger blood meals than uninfected ones, and will take multiple blood meals.

"We have now shown for the first time that the sense of smell could hold the key to understanding how the parasite successfully manipulates the mosquito to ensure its spread."

"Exploring this further opens up the possibility that we could use this knowledge against the parasite by developing tools with crucial chemicals found in human odour."

Dr Renate Smallegange, a visiting researcher at the School who worked on the pilot study, said: "It is exciting that we are the first ones to prove this phenomenon in a biological relevant system of mosquito, parasite and blood host, and, moreover, in a system affecting millions of people in sub-Saharan Africa."


Story Source:

The above story is based on materials provided by London School of Hygiene & Tropical Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Renate C. Smallegange, Geert-Jan van Gemert, Marga van de Vegte-Bolmer, Salvador Gezan, Willem Takken, Robert W. Sauerwein, James G. Logan. Malaria Infected Mosquitoes Express Enhanced Attraction to Human Odor. PLoS ONE, 2013; 8 (5): e63602 DOI: 10.1371/journal.pone.0063602

Cite This Page:

London School of Hygiene & Tropical Medicine. "Malaria infected mosquitoes more attracted to human odor than uninfected mosquitoes." ScienceDaily. ScienceDaily, 15 May 2013. <www.sciencedaily.com/releases/2013/05/130515174404.htm>.
London School of Hygiene & Tropical Medicine. (2013, May 15). Malaria infected mosquitoes more attracted to human odor than uninfected mosquitoes. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/05/130515174404.htm
London School of Hygiene & Tropical Medicine. "Malaria infected mosquitoes more attracted to human odor than uninfected mosquitoes." ScienceDaily. www.sciencedaily.com/releases/2013/05/130515174404.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins