Featured Research

from universities, journals, and other organizations

Moth-inspired nanostructures take the color out of thin films

Date:
May 16, 2013
Source:
North Carolina State University
Summary:
Inspired by the structure of moth eyes, researchers have developed nanostructures that limit reflection at the interfaces where two thin films meet, suppressing the "thin-film interference" phenomenon commonly observed in nature. This can potentially improve the efficiency of thin-film solar cells and other optoelectronic devices.

The nanostructures limit the amount of light reflected at the thin film interface.
Credit: Image courtesy of North Carolina State University

Inspired by the structure of moth eyes, researchers at North Carolina State University have developed nanostructures that limit reflection at the interfaces where two thin films meet, suppressing the "thin-film interference" phenomenon commonly observed in nature. This can potentially improve the efficiency of thin-film solar cells and other optoelectronic devices.

Thin-film interference occurs when a thin film of one substance lies on top of a second substance. For example, thin-film interference is what causes the rainbow sheen we see when there is gasoline in a puddle of water.

Gasoline is transparent, but some light is still reflected off of its surface. Similarly, some of the light that passes through the gasoline is reflected off the underlying surface of the water where the two substances interface, or meet. Because the light reflected off the water has to pass back through the gasoline, it takes a slightly different optical path than the light that was reflected off the surface of the gasoline. The mismatch of these optical path "lengths" is what creates the rainbow sheen -- and that phenomenon is thin-film interference.

Thin-film interference is a problem for devices that use multiple layers of thin films, like thin-film solar cells, because it means that some wavelengths of light are being reflected -- or "lost" -- at every film interface. The more thin films a device has, the more interfaces there are, and the more light is lost.

"We were inspired by the surface structure of a moth's eye, which has evolved so that it doesn't reflect light," says Dr. Chih-Hao Chang, an assistant professor of mechanical and aerospace engineering at NC State and co-author of a paper on the research. "By mimicking that concept, we've developed a nanostructure that significantly minimizes thin-film interference."

The nanostructures are built into thin films that will have a second thin film placed on top of them. The nanostructures are an extension of the thin film beneath them, and resemble a tightly-packed forest of thin cones. These nanostructures are "interfacial," penetrating into whatever thin film is layered on top of them -- and limiting the amount of light reflected at that interface. Chang's team found that the an interface featuring the interfacial nanostructures reflects 100 times less light than an interface of thin films without the nanostructures.

"Our next steps are to design a solar device that takes advantage of this concept and to determine how we can scale it up for commercial applications," Chang says.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qiaoyin Yang, Xu A Zhang, Abhijeet Bagal, Wei Guo, Chih-Hao Chang. Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference. Nanotechnology, 2013; 24 (23): 235202 DOI: 10.1088/0957-4484/24/23/235202

Cite This Page:

North Carolina State University. "Moth-inspired nanostructures take the color out of thin films." ScienceDaily. ScienceDaily, 16 May 2013. <www.sciencedaily.com/releases/2013/05/130516105614.htm>.
North Carolina State University. (2013, May 16). Moth-inspired nanostructures take the color out of thin films. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/05/130516105614.htm
North Carolina State University. "Moth-inspired nanostructures take the color out of thin films." ScienceDaily. www.sciencedaily.com/releases/2013/05/130516105614.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins