Featured Research

from universities, journals, and other organizations

Malaria's deadly grip revealed: Severe malaria breakthrough

Date:
June 5, 2013
Source:
University of Copenhagen
Summary:
Researchers have identified how malaria parasites growing inside red blood cells stick to the sides of blood vessels in severe cases of malaria. The discovery may advance the development of vaccines or drugs to combat severe malaria by stopping the parasites attaching to blood vessels.

At the hospital in Korogwe, Tanzania, mothers are waiting in line with their young children to have the children tested for malaria. The aggressive parasite kills one million people each year of which the majority is children below the age of five.
Credit: University of Copenhagen

Researchers at the University of Copenhagen, in collaboration with Seattle Biomedical Research Institute, the University of Oxford, NIMR Tanzania and Retrogenix LTD, have identified how malaria parasites growing inside red blood cells stick to the sides of blood vessels in severe cases of malaria. The discovery may advance the development of vaccines or drugs to combat severe malaria by stopping the parasites attaching to blood vessels.

Related Articles


Though researchers have known for over a century that red blood cells infected with malaria parasites can kill their host by sticking to the sides of blood vessels, the binding mechanism associated with the most lethal forms of malaria was unknown. Now, in a study published in Nature, the researchers show that the parasite binds a protein in blood vessel walls called endothelial protein C (EPCR), which is involved with regulating blood coagulation and the inflammatory response.

Malaria parasites grow in red blood cells and stick to the endothelial lining of blood vessels through a large family of parasite proteins called PfEMP1. This way, the parasite avoids being carried with the blood to the spleen, where it would otherwise be destroyed. One of the most aggressive forms of malaria parasite binds in brain blood vessels, causing a disease called cerebral malaria. In 2012, three groups of researchers, including the teams at the University of Copenhagen and Seattle Biomedical Research Institute, showed that a specific type of PfEMP1 protein was responsible for cerebral binding and other severe forms of malaria infection. However, until now, the receptor to which it binds remained unknown, and the next big question was to determine which receptors the infected red blood cells were binding to.

"The first big challenge was to generate a full-length PfEMP1 protein in the laboratory," says Assistant Professor Louise Turner at the University of Copenhagen. "Next, we utilized a new technology developed by Retrogenix LTD in the United Kingdom to examine which of over 2,500 human proteins this PfEMP1 protein could bind to." Of the 2,500 proteins screened, a receptor called endothelial protein C (EPCR) was the single solid hit.

"A lot of work then went into confirming this binding in the lab and not least to show that parasites from non-immune children with severe malaria symptoms in Tanzania often bound EPCR," she continues.

"It was a true eureka moment," says Assistant Professor Thomas Lavstsen. "Under normal conditions, ECPR plays a crucial role in regulating blood clotting, inflammation, cell death and the permeability of blood vessels. The discovery that parasites bind and interfere with this receptor´s normal function may help us explain why severe symptoms of malaria develop."

Malaria parasites disrupt the important functions of blood vessels Severe malaria symptoms such as cerebral malaria often result in minor blood clots in the brain. One of our body´s responses to malaria infection is to produce inflammatory cytokines, but too much inflammation is dangerous, describes Professor Joseph Smith, from the Seattle Biomedical Research Institute. "ECPR and a factor in the blood called protein C act as a 'brake' on blood coagulation and endothelial cell inflammation and also enhance the viability and integrity of blood vessels, but when the malaria parasites use PfEMP1 to bind EPCR, they may interfere with the normal function of EPCR, and thus the binding can be the catalyst for the violent reaction," he explains.

"Investigating this question is the next step to learn about how malaria parasites cause disease."

Towards an intervention

The discovery that malaria parasites bind EPCR may advance vaccine and drug interventions to treat severe malaria. Dr. Matthew Higgins from the University of Oxford explains:

"Now that we know the pair of proteins involved, we can begin zooming further in to reveal the molecular details of how malaria parasites grab onto the sides of blood vessels. We want to know exactly which bits of the parasite protein are needed to bind to the receptor in the blood vessel wall. Then, we can aim to design vaccines or drugs to prevent this binding."

Vaccine research will also benefit immediately from the discovery, since scientists can already now test the effectiveness of different vaccine candidates at preventing PfEMP1 from binding ECPR. "Over the last decade, we have come to appreciate that specific PfEMP1 proteins are associated with different severe forms of malaria," explains Professor Thor Theander at the University of Copenhagen. "Together with The National Institute for Medical Research Tanzania, we are in the process of preparing phase I trials for a vaccine to prevent parasite binding in the placenta and malaria during pregnancy," he explains. This new discovery holds the potential for also developing a vaccine to reduce the heavy burden malaria disease inflicts on children. "It will be a long haul, but with these results, we can get started right away," he says.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Louise Turner, Thomas Lavstsen, Sanne S. Berger, Christian W. Wang, Jens E. V. Petersen, Marion Avril, Andrew J. Brazier, Jim Freeth, Jakob S. Jespersen, Morten A. Nielsen, Pamela Magistrado, John Lusingu, Joseph D. Smith, Matthew K. Higgins, Thor G. Theander. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature, 2013; DOI: 10.1038/nature12216

Cite This Page:

University of Copenhagen. "Malaria's deadly grip revealed: Severe malaria breakthrough." ScienceDaily. ScienceDaily, 5 June 2013. <www.sciencedaily.com/releases/2013/06/130605133558.htm>.
University of Copenhagen. (2013, June 5). Malaria's deadly grip revealed: Severe malaria breakthrough. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/06/130605133558.htm
University of Copenhagen. "Malaria's deadly grip revealed: Severe malaria breakthrough." ScienceDaily. www.sciencedaily.com/releases/2013/06/130605133558.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins