Featured Research

from universities, journals, and other organizations

Deep brain stimulation trial in treatment-resistant obesity links weight loss trend to metabolism increase programmed in metabolic chamber

Date:
June 13, 2013
Source:
International Neuromodulation Society
Summary:
A deep brain stimulation trial in treatment-resistant obesity linked a weight loss trend to a metabolism increase programmed in a metabolic chamber, according to a pilot study.

The first use of deep brain stimulation to the brain's so-called "feeding center" -- the lateral hypothalamic area (LHA) -- was associated with a weight loss trend in morbidly obese patients whose stimulation was tuned to increase metabolism with novel guidance from metabolic chamber data, according to a pilot study presented at the International Neuromodulation Society's 11th World Congress by Dr. Michael Oh of the Department of Neurosurgery at the Allegheny General Hospital in Pittsburgh, Pa.

Related Articles


Animal and lesioning studies suggested the LHA may be a promising neurostimulation target to augment weight-loss efforts for morbidly obese patients, patients whose weight exceeds 50 percent of normal, and who had failed other weight-loss attempts. In the FDA-approved study focused on safety and early efficacy findings, three patients who had failed to keep weight off after gastric bypass surgery received deep brain stimulation implants in 2009-2010.

Deep brain stimulation (DBS) is routinely used to control motor symptoms in patients with Parkinson's disease and dystonia, and the same movement-disorder stimulation program was initially used in these obesity trial patients. Deep brain stimulation involves implanting slender leads tipped by a row of electrical contacts designed to non-destructively deliver mild electric pulses to a specific location. The leads are connected to a compact, battery-operated pulse generator in a fashion similar to a heart pacemaker. Electrical brain stimulation is intended to rebalance neural circuits, influencing a symphony of nerve firing and neurotransmitter release, and offers the advantage of being programmable and reversible.

With collaborators at Pennington Metabolic Center in Baton Rouge, LA, Oh and colleagues arranged for the patients to undergo detailed metabolic studies over the course of three days. Based on results of individually testing stimulation with a different electrical contact on the DBS leads each day, the researchers chose a stimulation regime that showed the greatest effect in raising resting metabolic rate. The rate was measured while the patients rested comfortably in an enclosed metabolic chamber where their respiration (consumption of oxygen and release of carbon dioxide) and related factors were analyzed.

Patients were encouraged but not required to lie down during testing, and were also allowed to read, surf the Internet, or watch television. Infrared sensors and videotape footage let researchers track activity. During periods of relative inactivity, the rate of energy expended (or calories "burned") was captured. A baseline score was measured when the device was turned off, with multiple "off" readings averaged over the time in the chamber and then repeated with the stimulation "on." Rates of change were considered indeterminate if a patient's spontaneous movement made it difficult to tell if it was caused by stimulation or motion.

In addition, the patients' lipid profiles and psychological factors were screened. No negative effects on psychological or cognitive function were found.

After nine months, one patient who had experienced a 9 percent increase in resting metabolic rate reduced his weight by 16.4 percent. Another patient, whose metabolic chamber metabolic rate change was indeterminate due to motion during the selected stimulation approach, lost 12.3 percent of her weight after 11 months at the optimal setting. The final patient had a 0.9 percent decrease after 16 months at optimal settings, but also commented that this was the first time in her life that she did not have to fight constant hunger, and her binge eating score reduced from severe to within normal range.

The metabolic studies proved useful to guide optimal settings, Oh said. The team believes expanded research studies might show that optimal settings would reduce appetite and food cravings, as well. With the existing patients, the team will continue to monitor effects of hypothalamic deep brain stimulation and examine persistence of the impact on metabolic rate. In order for survival during lean times, humans have evolved to automatically lower metabolic rate when food intake goes down -- an innate "set point" that can add challenge to weight-loss efforts. This work by Oh and colleagues suggests that the "set point" can be adjusted like a thermostat.


Story Source:

The above story is based on materials provided by International Neuromodulation Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Donald M. Whiting, Nestor D. Tomycz, Julian Bailes, Lilian de Jonge, Virgile Lecoultre, Bryan Wilent, Dunbar Alcindor, E. Richard Prostko, Boyle C. Cheng, Cynthia Angle, Diane Cantella, Benjamin B. Whiting, J. Scott Mizes, Kirk W. Finnis, Eric Ravussin, Michael Y. Oh. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. Journal of Neurosurgery, 2013; 1 DOI: 10.3171/2013.2.JNS12903

Cite This Page:

International Neuromodulation Society. "Deep brain stimulation trial in treatment-resistant obesity links weight loss trend to metabolism increase programmed in metabolic chamber." ScienceDaily. ScienceDaily, 13 June 2013. <www.sciencedaily.com/releases/2013/06/130613092007.htm>.
International Neuromodulation Society. (2013, June 13). Deep brain stimulation trial in treatment-resistant obesity links weight loss trend to metabolism increase programmed in metabolic chamber. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2013/06/130613092007.htm
International Neuromodulation Society. "Deep brain stimulation trial in treatment-resistant obesity links weight loss trend to metabolism increase programmed in metabolic chamber." ScienceDaily. www.sciencedaily.com/releases/2013/06/130613092007.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins