Featured Research

from universities, journals, and other organizations

Lab reproduction of a marine compound with antibiotic properties

Date:
June 20, 2013
Source:
Institute for Research in Biomedicine-IRB
Summary:
Chemists have synthesized baringolin, a substance isolated from the depths of the sea. At very small doses this compound inhibits the growth of antibiotic-resistant bacteria.

Baringolin is a marine product with antibiotic properties.
Credit: Image courtesy of Institute for Research in Biomedicine-IRB

Chemists at IRB Barcelona synthesize baringolin, a substance isolated from the depths of the sea. At very small doses this compound inhibits the growth of antibiotic-resistant bacteria.

Bacterial resistance to drugs leads pharmaceutical labs to be in constant search for new antibiotics to treat the same diseases. For the last thirty years, the sea bottom has yielded a wealth of substances with properties of interest to the pharmaceutical industry. Isolated from a marine microorganism off the coast of Alicante by the company BioMar, baringolin shows promising antibiotic activity at a very low concentration. The Combinatorial Lab headed by Fernando Albericio at the Institute for Research in Biomedicine (IRB Barcelona), which collaborates with BioMar, has now synthesized this molecule and revealed its structure. Today's results open up the possibility to better understand how this substance works and to design derivatives to turn into a viable drug in the next 10 years. These findings are advanced in todays' online edition of Angewandte Chemie, the scientific journal of reference in chemistry.

The researcher Xavier Just-Baringo, who is doing his PhD in the Combinatorial Chemistry Lab, has spent the last four years studying the structural composition of baringolin and has reconstructed this molecule in the lab as if it were 3D a puzzle of atoms that can be joined up in many ways. "This substance has 128 possible structural configurations but only one is an exact replica of the natural peptide. We have been able to find it via 39 synthesis steps," explains Just-Baringo who has had the privilege to name the new compound.

The researchers have finely tuned the organic synthesis of the natural peptide and several analogues and will address the biological activity of these molecules and attempt to improve their pharmacological and pharmacokinetic properties. Through collaboration with the Department of Pharmacology at the Hospital Clínic de Barcelona, they will test the analogues against several strains of gram-positive bacteria, one of the two large groups into which bacteria are classified and against which baringolin has shown inhibitory activity.

Thiopeptides: a new family of antibiotics

Structurally speaking, baringolin is a thiopeptide. These molecules are a new family of antibacterial agents of terrestrial and marine origin, and about 100 have been identified to date. "There is only one thiopeptide on the market for the treatment of bacterial infections, thiostrepton (Panolog), and it is used in veterinary medicine for skin infections. Nothing is available for humans yet," explanis Mercedes Álvarez, associate researcher in the lab, senior professor at the University of Barcelona (UB), and supervisor of the study. The main drawback of thiopeptides is that they show low solubility. For baringolin to be viable as a drug, its solubility must be improved because antibiotics are administered orally or intravenously. "Using the analogues, we aim to improve this feature and identify the parts of the molecule responsible for their antibiotic activity in order to be able to design new more active and smaller analogues," says Álvarez.

"We have taken the first step towards achieving a future drug," says Albericio. "Along the way we have learnt how to synthesize natural molecules and have developed new methods," adds the head of the group and senior professor at the UB. The final objective of the lab is to achieve the total synthesis of natural substances, the last two of which have been thiocoralin, an antitumoral agent that belongs to PharmaMar, and baringolin, belonging to BioMar. "The synthesis of natural products in the lab has a double justification. One is environmental, to protect species that hold substances of pharmacological interest, and the other is commercial, as manufacturing a drug on a large scale is viable only if its production can be ensured on an industrial scale," explain the researchers.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine-IRB. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xavier Just-Baringo, Paolo Bruno, Lars K. Ottesen, Librada M. Cañedo, Fernando Albericio, Mercedes Álvarez. Total Synthesis and Stereochemical Assignment of Baringolin. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201302372

Cite This Page:

Institute for Research in Biomedicine-IRB. "Lab reproduction of a marine compound with antibiotic properties." ScienceDaily. ScienceDaily, 20 June 2013. <www.sciencedaily.com/releases/2013/06/130620100830.htm>.
Institute for Research in Biomedicine-IRB. (2013, June 20). Lab reproduction of a marine compound with antibiotic properties. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/06/130620100830.htm
Institute for Research in Biomedicine-IRB. "Lab reproduction of a marine compound with antibiotic properties." ScienceDaily. www.sciencedaily.com/releases/2013/06/130620100830.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) — Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) — A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins